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Abstract: The purpose of this research is to improve the machining accuracy of YK3610 Hobbing machine through 
thermal error compensation. This study presents the whole process of thermal error modeling and compensation by 
using Back Propagation Network (BPN) and ant colony optimization is introduced into the training of BPN. The 
results show that the BPN model based on ant colony algorithm improves the prediction accuracy of thermal errors 
on the gear hobbing machine and the thermal drift has been reduced from 14.2 µm to 4.5 µm after compensation. 
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INTRODUCTION 

 
Among the sources of machine error, thermally 

induced errors account for 70 percent of the total errors, 
Ni (1997) presents real-time error compensation 
methods to reduce thermally induced machine tool 
errors. The mechanism causing the deformations of 
gear hobbing machine is so complex that the thermally 
induced errors are hard to predict. As a result, accurate 
modeling of thermal errors becomes the key step of 
error compensation. In recent years, a lot of research 
work concentrated on thermal error modeling has been 
conducted, such as successive regression analysis, 
different kinds of neural networks, grey system theory,  
multi-body system theory. Srinivasa and Ziegert (1996) 
develop a neural network model used to predict 
thermally induced errors in machine tools and the 
machine model is further tested using random thermal 
duty cycles. Ramesh et al. (2003) presents a hybrid 
Support Vector Machines-Bayesian Network model, the 
model is especially useful in a production environment 
wherein the machine tools are subject to a variety of 
operating conditions. Yang and Ni (2005) present a new 
modeling methodology for nonstationary machine tool 
thermal errors. The method uses the dynamic neural 
network model to track nonlinear time-varying machine 
tool errors under various thermal conditions. Chen 
(1996) presents a neural network model for on-line 
thermal error monitoring and the spindle thermal errors 
of a vertical machining centre were reduced by 70% 
after compensation. Gao et al. (2011) builts the relation 
between screw life and vibration features based on 
Compact Support Gaussian Fuzzy Neural Networks and  

the parameters of the new model are optimized by an 
adaptive learning algorithm. Li et al. (2006) studies the 
optimization of thermal sensors’ placement on machine 
tools based on grey correlation model of grey system 
theory. After optimization, the temperature variables in 
the thermal error’ model are reduced from 16 to 4. 
Wang et al. (1998) presents a systematic methodology 
for the thermal-error correction of a machine tool and 
the thermal deformation is modeled using grey system 
theory so that a dynamic model can be obtained. In this 
study, BPN method based on Ant Colony Algorithm 
(BPN-ACO) is proposed to predict the thermal errors, 
which improves the accuracy of thermal error model. 
Finally, a high-accuracy thermal error compensation 
system based on the proposed BPN-ACO model has 
been developed to compensate for the thermal errors on 
YK3610 hobbing machine effectively. 

 

EXPERIMENTAL SETUP 
 

The experiment was implemented on YK3610 
hobbing machine as shown in Fig. 1. To detect the 
temperature field of the machine tool, a total of 10 
thermistors were installed and the locations of these 
thermistors can be divided into 7 groups: 

 

• 1 Thermistor for measuring the bed temperature 

• 2 Thermistor for measuring the guide way 

temperature 

• 2 Thermistors for measuring the temperatures of 

hob spindle 

• 2 Thermistors for measuring the temperatures of 

workpiece spindle 
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Fig. 1: The tested YK3610 hobbing machine 

 

 
 
Fig. 2: The capacitance sensor mounted on the tool turret 

 

 
 
Fig. 3: Temperature histories of thermistor No. 1-10 
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Fig. 4: Thermal errors of the spindle in the radial direction 

 

• 1 Thermistors for measuring the temperatures of 
the column 

• 1 Thermistor for measuring the temperature of the 
feed plate 

• 1 Thermistor for measuring the temperature of the 
coolant tank 

 
A capacitance sensor mounted on the tool turret 

was applied to measure the thermal drifts of the spindle 
in the x direction (the thermal errors of the spindle in 
the radial direction), as shown in Fig. 2.  

First, an experiment was conducted to simulate the 
cycle of cutting a gear, in which the hob spindle was 
rotating at a speed of 1000 rpm, the workpiece spindle 
was rotating at a speed of 100 rpm and the coolant was 
flowing, but no gear was really processed. Initially, the 
gear hobbing machine ran for 4h. Then, the gear 
hobbing machine ran for another 2 h and then was 
cooled down for 6h. Under these working cycles, the 
temperature histories measured by thermistors (No.1-
10) are shown in Fig. 3. Thermal error histories 
measured by the capacitance sensor are shown in Fig. 4.  
 

THERMAL ERROR MODELING 
 

Artificial Neural Networks (ANN) are massively 
parallel information processing architectures composed 
of many simple, usually adaptive, processing elements 
interconnected to achieve specific collective 
computational capacities. The information is stored as 
weights and distributed throughout the interconnections 
of the network. The past few years have seen the 
development and practical application of ANNs in 
many fields. As a multilayered, fully connected, feed-
forward network, BPN is used more widely than the 
other ANNs. The first layer of BPN network is called 
the input layer and the last layer is called output layer. 
Between the two layers is the hidden layer. By virtue of 
the computational structure, ANN possesses 
characteristics which are particularly attractive for the 
modeling of complicated and non-linear systems. The 

performance of BPN is dependent on the several 
factors: 

 

• The number of the hidden layers and the hidden 

nodes  

• The learning rate and the momentum 

• The number of the training data 

 

Due to the characteristics of the gradient descent 

algorithm, BPN may converge to the local minimum of 

output error instead of the global minimum of output 

error, which induces the low convergence rate. To 

improve the performance, increase of hidden nodes (or 

layers), decrease of the momentum, the learning rate 

and the training data are suggested. Although 

sometimes the improvement is achieved at the price of 

computational cost, new solutions are still needed. In 

this study, ACO was introduced into the training of 

BPN. 

In ant societies, the behaviors of the individuals are 

adaptive and robust, which are not regulated by any 

explicit form of centralized control. These complex 

behaviors are the result of self-organizing dynamics 

driven by local interactions and communications among 

a number of relatively simple individuals, which have 

made ant societies an attractive focus in recent years. 

Among the different works inspired by ant colonies, 

ACO is probably the most successful and popular one, 

which was firstly put forward by Marco Dorigo in 

1990’s and has been used successfully for solving 

complex optimization problems such as scheduling 

problems, traveling salesman problems. Zhao et al. 

(2011) presents the ant colony optimization algorithm. 

ACO algorithm has the following components: a 

set of ant-like agents, the use of memory and stochastic 

decisions and strategies of collective and distributed 

learning. ACO draws its inspiration in the foraging 

behavior of ant colonies that, under appropriate 

conditions, are able to select the shortest path among 

few possible paths connecting their nest to a food 

source. The pheromone (a volatile chemical substance 

laid on the ground by the ants) is the mediator of this 

behavior, which affects in turn their moving decisions 

according to its local intensity while walking. 

The basic idea of BPN-ACO can be explained as 

follows. After the structure of BPN is determined, the 

ants can be seen as input signals concurrently 

propagating through BPN and training the weights of 

the inter-neuron connections. The ants are locally 

propagated by means of a stochastic transfer function, 

the ant stochastic decision policy using only local 

information, the risk of being trapped in the local 

optima sharply decreases. 
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Fig. 5: The structure chart of BPN 

 

 
 
Fig. 6: The flowchart of BPN-ACO 

 
Table 1: The parameters of BPN 

The parameters of BPN Value 

Network structure 4-9-1 

Initial weights Random of (0, 1) 
Learning rate 0.02 

Momentum rate 0.5 

Learning adjusting coefficients 0.8 

 
Based on the analysis mentioned above, a three-

layer BPN was adopted in this study to approximate 
thermal error in the radial direction. Ten neurons were 
used in the input layer to denote the ten temperature 
variables. One neuron was adopted in the output layer 
to represent thermal error. There are no perfect rules to 
determine the number of hidden nodes. The general 
procedure is by choosing a relative large number firstly 
and then the number is modified to satisfy the error 
demand. According to Kolmogorov theorem, the 
number of the hidden nodes is set as 2N+1 = 2×10+1 = 
21 finally (where N is the neuron number of the input 
layer). The BPN structure in this study was shown in 
Fig. 5. In the next section, 50 training samples were 
obtained from the thermistors and the capacitance 
sensor firstly. And then, the parameters of BPN were 

set as listed in Table 1. Finally, ACO was used to adjust 
the 231 weights of BPN. The flowchart of BPN-ACO is 
shown in Fig. 6. 

Suppose ���(1 = 1, 2…9, 10 j = 1, 2…21) is the 

weights between the input layer and the hidden layer, 
�� (j = 1, 2…21) is the biases of hidden nodes, �� (j = 

1, 2…21)  is the weights between the hidden layer and 
the output layer, θ is the biases of the output node. 
Suppose ���(t) is the pheromone laid on path i→j at 

moment t, ��(t)  is the pheromone laid on path j→OL 

(output layer) at moment t, which are used to simulate 
the pheromone intensity ants left. The training process 
includes the following steps: 

 

• At the beginning of the training, 10 ants are 
allocated to the nodes of the input layer, the initial 
value of pheromone laid on path i→j is defined 
as ���(0) and the initial value of pheromone laid on 

path j→OL is defined as ��(0). 

• Each ��� composes a class called �	
�
  , each ��  

composes a class called ��
   . According to the 

pheromone intensity ratio, the ant chooses element 
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in �	
�
 and ��

  . The probability of the ant 

chooses an element in  �	
�
 and ��

 is: 
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where, 

���
�
(t) = The pheromone value of element in �	
�

 at 

moment t  

����
 (t) =  The pheromone value of element in ��

 at 

moment t  

 

Finally, the element has maximum probability is 

chosen as the optimized weights. 

 

• Next, the pheromone value of the optimized 

weights are adjusted according to the following 

equations:  
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where,  

α =  The attenuation coefficient of the pheromone,  

∆t =  The time step of choosing an element.  

∆���
�  =  The pheromone left on path i→j by ant n, 

∆��
�is the pheromone left on path j→OL by ant 

n, the calculation rule is as follows: 

 

 
ij

n
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j
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where,  

Q = A constant used to adjust the growth rate of the 

pheromone  

�	
�
  = Maximum sampling error of the hidden nodes 

��
 = The maximum sampling error of the output 

node  
1

max
m

l ll
e Y O

=
= − , m= The sample number 

��  = The expected output of the neural cells 

��  = The practical output of the neural cells 

 

According to the adjusting equation, the smaller 

the error, the  faster  the  pheromone  grows.  When  the  

pheromone intensity reached a certain value, the error 

demand is met and the optimized weights are obtained. 

If the error demand can not be met, the training process 

returns to step 2). 

 

THERMAL ERROR COMPENSATION 

 

The thermal error compensation system developed 

in this study was shown in Fig. 7. When the 

compensation was carried out, the temperature signals 

of the 10 key temperature points and the thermal error 

signals in the radial direction were measured with the 

thermistors and the capacitance sensor firstly. Then the 

signals were processed with the Signal Processing Unit 

(SPU, which is composed of DSP, amplifier, A/D 

board, serial port, parallel port, etc) and sent to the 

database of a PC through the serial port. In the next 

step, thermal error model was constructed using PC 

based on BPN method and the optimized model was 

sent back to DSP through the serial port. Finally, the 

compensation value was obtained by DSP and sent to 

CNC controller of the gear hobbing machine turning 

centre through the parallel port. After the feedback was 

added to the control signal of the servo loop, thermal 

error compensation came true at last.  

In order to test the performance of the BPN-ACO 

model, one experiment was carried out. With the 

running of the developed system, 10 gears were 

machined on the YK3610 hobbing machine. The 

material of the workpieces was 45 steel. The hob 

spindle speed was set as 1000 rpm and the workpiece 

spindle speed was set as 100 rpm. During the 

experiment, the thermal errors were measured with the 

capacitance sensor and the predicted values were 

obtained using BPN-ACO model. Comparison of the 

measured value and the predicted values was shown in 

Fig. 8. It can be seen that the approximation ability of 

the model is very well, the residual error of the model is  

 

 
 
Fig. 7: Thermal error compensation system 
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Fig. 8: The test results of the compensation system 

 

smaller than 4.5 µm and the compensation system is 
very effective. 

 
CONCLUSION 

 
In this study, a BPN-ACO model was proposed for 

the prediction of the thermal errors on YK3610 hobbing 
machine. The approximation ability of the proposed 
BPN-ACO model is very well. During the performance 
test of the developed system, the thermal drift of the 
spindle in the x direction is reduced from 14.2 µm to 
4.5 µm and the machining accuracy of the YK3610 
hobbing machine is improved significantly. 
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