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Abstract: Regarding the diversity and complexity of the road conditions on the soft sediment seabed, in order to 
improve the driving control precision of the caterpillar nodule collector, this study, focusing on the noise disturbance 
of the nodule collector body, adopts the methods of wavelet packet decomposition algorithm and Hilbert-Huang 
transformation algorithm to reconstruct the nodule collector body vibration signals, which are targeted by Hilber-
Huang transformation algorithm to reach IMF fraction in the process of Empirical Mode Decomposition. Therefore, 
through the Hilbert spectrum analysis of IMF component, IMF component power characteristics are achieved, the 
available IMF component is optioned to reconstruct signals and the disturbance of the noise is eliminated. 
Comparing to the approach of wavelet decomposition, Hilbert-Huang transformation’s analysis and algorithm of the 
collector body’s vibration signals’ reconstruction are more accurate, providing valid control parameter to control the 
drive of caterpillar nodule collector on the soft quality bottom of the sea more precisely. 
 
Keywords: Empirical mode decomposition, hibert spectrum, hilber-huang changes, IMF component, nodule 

collector’s body vibration signals, wavelet decomposition 

 
INTRODUCTION 

 
In the deep-sea mining system, caterpillar nodule 

collector is applied to collect polymetallic nodule, 

which, during its operation, is affected by coincident 

and complicated environmental factors, including wind, 

wave, sea current and submarine high-voltage, etc. Its 

performance in the fields of kinematics and dynamics is 

complex enough to bring immense challenge to the 

control system of the caterpillar nodule collector that 

runs on the soft sediment (Dai and Shao-Jun, 2009; 

Wang and Liu, 2004; Liu et al., 2003). 

In the control system, the collected collector’s 

vibration signals are unavoidably interrupted by noise. 

Furthermore, as the measured signals and the disturbing 

signals are non-stationary signals, it is a tough job to 

eliminate the noise by adopting the filtering method. 

For example, while using Fourier filtering method to 

filter the noise (Alsdorf, 1997), Gaussian noise as well 

as some important high-frequency information is 

destroyed; while using spline fitting method (Xian-

Liang et al., 1996), though Gaussian noise is perfectly 

ceased, some invalid information will enter the control 

system.  

This study  mainly aims to apply the approaches of 
wavelet decomposition and Hilbert-Huang changes 
(Wei et al., 2010; Rai and Mohanty, 2007; Li et al., 
2008; Dong et al., 2008a, b) to deal with crawler-style 
set tub's vibration signals, in the meantime, those 
respectively received reconstructed signals and the 
practical vibration signals are compared and contrasted. 
It is shown that reconstructed vibration signals with 
Hilbert-Huang changes are more accurate.  

This study, concentrating on the significant 
importance of the accuracy of control system which 
ensures the possibility of the caterpillar nodule 
collector’s on the soft quality bottom of the sea, has 
great academic value and perspective for wide 
application in construction.  
 

INTRODUCTON OF WAVELET 
DECOMPOSITION THEORY 

 
Wavelet packet: Consider Orthogonal wavelet basis’s 
Filter coefficients as h (n) and g (n) respectively, in 
addition that criterion function φ (t) is changed into ω0 
(t) and wavelet function ψ (t) into ω1 (t). Then, two-
scale equations about scale function φ (t) and wavelet 
function ψ (t) are: 
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H (ω) and G (ω) are the Fourier transformation for 

h (n) and g (n) respectively:   
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Fourier transformation for two-scale equations is: 
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A new space U
l
j is proposed as a united 

representation for scale space Vj and a wavelet Space 

Wj. Suppose that:  
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Hence, multiple resolving power space’s 

orthogonal decomposition Vj-1 = Vj ⊕ Wj is able to be 

united by U
I
j’s decomposition: 
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It is to define subspace U
l
j to be function ω1 (t)’s 

closure space, but U
2l

j is function ω2l (t)‘s closure space. 

Then ωl (t) is fit to the following two-scale equations: 
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And,  
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Wavelet packet {ωl (t)} is defined as a 

correspondent function set, including scale function ω0 

(t) = φ (t) and wavelet function ω1 (t) = ψ (t). 

Wavelet packet decomposition: Suppose l = 1, 2,…, n 
and j = 1, 2,…, n. The Eq. (11) is decomposed 
iteratively as follows:  
 

1 2 3

1 1j j j jU W U U+ += = ⊕
                (12) 

 
However, 
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 Therefore, various decompositions from wavelet 
space Wj can be achieved:  
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The decomposed subspace sequence from Wj space 
can be rewritten into U

2l+m
j+l, m = 0, 1,…, 2l-1; l = 1, 2, 

…, j; j = 1, 2, …. Subspace sequence U
2l+m

j+l’s standard 
orthonormal basis is: 
 

( )/2 ( )

2
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When l = 0 and m = 0, subspace sequence U

2l+m
j+l 

is abbreviated to be U
l
j = Wj, the correlated orthonormal 

basis to be {2
-j/2

 w1 (2
-j
 t-n) = 2

-j/2
 ψ  (2

-j
 t-n)}, which is 

right to be standard orthonormal wavelet basis {ψj, n 
(t)}.  

 

INTRODUCTION OF HIBERT-HUANG 

CHANGES 
 

The basic idea of EMD decomposition (Loutridis, 

2004; Chang and Lee, 2009; Jia-Qiang et al., 2008):  
 

• Find signals’ all local minimums and use line 
transect three times to string all the local maximum 
points and local minimum points to form upper and 
below envelope, which contain all the data points. 
The medium value of two envelop lines are marked 
as m1, the difference between X and m1 is h1: 

 

1 1( ) ( ) ( )h t X t m t= −
                 (16) 

 
If h1 (t) satisfies IMF’s condition, h1 (t) is an IMF 
and h1 (t) is the first component for X (t). 

• If h1 can’t satisfy IMF’s definition, h1 (t) is 
considered as original data, the repetition of the 
former procedure leads to: 
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where, m11 (t) is the average of the upper and lower 
envelope and then it’s time to judge whether h11 (t) 
satisfies IMF’s definition. In case that satisfaction 
fails, the loop will be repeated k times to reach an 
answer h1k (t) = h1 (k-1) (t) -m1k (t), which is 
enough to enable m1k (t) to satisfy IMF’s definition 
with a mark c1 = h1k. 

• The following result embodies by separating c1 
from data X: 

 

1 1
( ) ( ) ( )r t X t c t= −

                                            (18) 
 

And then turn r1 (t) into new original data and 
repeat the procedures above once and again. As a 
result, the second fraction c2 is reached to satisfy 
IMF. The repeated loops come to: 
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In order to determine the signal processing is no 
longer with IMF, IMF component is generally taken to 
end the loop. Now that it’s harsh to have IMF 
components satisfy condition (2), width wave is 
supposed to be deleted in a physical sense. For this 
reason, condition (2) should follow more valid quantity 
criterion to make sure that every IMF is in width and 
frequency’s physical sense. The standard is provided 
owing to Eq. (5): 
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where,  

m1k (t) : Medium envelop realized by algorithm of 

this looping of IMF components’ 

extracting modules  

m1 (k-1) (t) : Medium envelop in the last loop  

0, …, T : All the time points that medium envelop 

line contains  
 

The ideal SD value should be between 0.2-0.3. Those 

two conditions above that satisfy IMF components not 

only lay foundations of the consequent Hibert changes, 

but also render every component meaningful in a 

physical sense. 

Not until rn (t) becomes a monotonic function that 

is impossible to be extracted to meet IMF components, 

the loop comes to an end. So the initial data is the sum 

of IMF components and the final remnant and 

expressed as follows:  
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Fig. 1: Vibration signal including the noise about mining 
vehicle tracked body 

 

Hilbert spectrum analysis of IMF components:  
Hilbert spectrum illustrates total vibration width (or 
power) distributed on every frequency value. It 

discovers the width (or power) accumulation on total 

data sequence so that power’s distribution regularities 

in the scales of space (or time) are deliberately reflected 

during the physical process. And considering Hilbert 

changes of IMF components, IMF components’ 
aggregate vibration width with correlated frequency is 

obvious on frequency spectrum. IMF components with 

minor power are regarded as noise and eliminated.  

After Signal X (t) is decomposed into a number of 

IMF components by EMD treatment, Each IMF 

component ci (t) through the Hilbert Transformation as 
follows: 
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When the Eq. (8), (9) and (10) are possible, the 

instantaneous envelop ai (t) and frequency ωi (t) will be 
reached:  
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Original  signal  X (t)  is the real component for 

Eq. (11) after Hilbert transformation of every IMF 

components. 

 

NODULE COLLETOR’S BODY VIBRATION 

SIGNAL RECONTRUCTION 
 

The collected signals in experiments were 

caterpillar nodule collector’s body vibration signals 

when it runs on the soft quality bottom of the sea. In the 

first Fig. 1, there were 500 mixed signal data about 
collector’s body vibration, including the noise.  
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Table 1: The band wavelet packet power percentage 

Wavelet packet Band power (%) 

s (3, 0) 79.84 
s (3, 1) 6.19 
s (3, 2) 4.74 
s (3, 3) 0.78 
s (3, 4) 4.53 
s (3, 5) 2.96 
s (3, 6) 0.42 
s (3, 7) 0.54 
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Fig. 2: Wavelet packet decomposition reconstruction of 

collector’s body vibration signals  

 
Wavelet decomposition reconstruction of collector’s 
body vibration signals: Wavelet basis is a crucial 
element in wavelet transform. Reasonable option of 
wavelet means a lot to extract accurate signals and 
characteristics. Through the analysis of wavelet basis, it 
is known that Daubechies wavelet, Symlets wavelet and 
Coitlets wavelet are appropriate for vibration signal 
analysis of wavelet. Coiflets4 wavelet is chosen. 
Decompose signals with closure algorithm in K levels. 
In each process of decomposition, the nth frequency 
band of upper level j will be further divided into j+1’s 
2nth and 2n+1’Th frequency bands. Therefore, the 
frequency domain on k level will be divided into 
0~fs/2k, fs/2k~2fs/2k,…, 2k-1 fs/2k~fs, among which 
fs has the highest frequency. 

Based on the standard of coiflets4 wavelet packet, 
the decomposition of the signal in 3 levels will gain 8 
wavelet packet in all, ranging from s (3, 0) ~s (3, 7) 
which are shown in the Table 1. 

From the power characteristics of every frequency 
band and the percentage, wavelet packets s (3, 0), s (3, 
1), s (3, 2), s (3, 4) with a wealth of wavelet packet 
feature information are regarded as distinctive wavelet 
packets, which are extracted and reconstructed and 
shown in Fig. 2. 
 
Reconstruction of body vibration signals through 
hilbert-huang changes: Body vibration signals are 
decomposed and IMF components from IMF1 to IMF9 
are obtained and shown in Fig. 3. 

IMF1~IMF9 represent the gradually adaptive 
development from the low-level IMF components (the 
high-frequency elements are major in number) to the 
high-level IMF components (the low-frequency 
elements are major in number), through the process, the 
frequency components of the caterpillar nodule 
collector’s body vibration signals will be extracted from 

 

 

 
 

Fig. 3: IMF components of collector’s body vibration signals 
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Fig. 4: IMF components’ decomposition of caterpillar nodule 

collector’s body vibration signals 

 
high levels to low levels. Regarding EMD 
decomposition approach’s internal characteristics, its 
basic function is adaptive in itself. Hence, without the 
influence of prior estimated basic function which ever 
greatly affected traditional signal analytic method, the 
achieved IMF1~IMF9 components are the real and 
direct responses to the signals. Figure 3 is IMF1~IMF9 
components’ Hilbert spectrum. 
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Fig. 5: IMF components’ Hilbert spectrum of caterpillar 

nodule collector’s body vibration signals 

 

The outcome of practical test notes that the major 

cause for the irregular waves of the collector’s body 

vibration signals derives from diverse factors, 

consisting of wind, wave, current and high pressure of 

sea bottom etc, while it’s running on the soft quality 

bottom of the sea. So the diesel’s body vibration signals 

with noise are initially implemented EMD 

decomposition. Judging from the analysis of IMF 

components’ Hilbert spectrum, such as illustrations in 

Fig. 4, it unveils that the power of collector’s vibration 

signals is intensive on IMF1, IMF2, IMF3, IMF4, 

IMF9, so that except IMF5, IMF6, IMF7与IMF8, the 

rest of IMF components are about to be reconstructed 

for the purpose of getting collector’s body vibration 

signals after denoising according to Fig. 5. The test for 

the real displacement during the process of collector’s 

body vibration displays the  fact  that  the  reconstructed 
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Fig. 6: The relative error of the actual data 

 

signals can simulate the mode of authentic tendency 

that caterpillar nodule collector’s body vibrates when 

it’s walking on the soft quality bottom of the sea. 

 

Comparison between the reconstructed signals and 

real data: Ten sets of samples are selected and 

analyzed in order to compare collector’s body vibration 

signals’ decomposed and reconstructed wavelet signals 

with the comparative errors between Hilbert-Huang 

transformation reconstruction signals and the real data. 

The comparisons of the errors lie in Fig. 6.  

It is evident in Fig. 6 that the relative maximum 

errors of Hilbert-Huang transformation’s reconstructed 

signals are about 17.8%, relative minimum errors 

11.8%, relative medium errors 17.3%. And those for 

wavelet packet decomposition are 22.3, 14.3 and 

17.3%, respectively. It is evident that the relative error 

of Hilbert-Huang transformation’s reconstructed signals 

is minor to those of wavelet packet’s decomposed and 

reconstructed signals. 

 

CONCLUSION 

 

• EMD approach, by which each IMF component 

contains local feature information of original 

signals by self-adapting decomposition based on 

local feature information, have some physical 

significance; While adopting the method of 

decomposing signals by wavelet packet 

decomposition, wavelet packet’s basis function 

should be determined in advance and wavelet 

decomposition is not a self-adaptive decomposition 

approach any more. 

• Hilbert-Huang changes and the analysis of wavelet 

packet’s decomposed and reconstructed signals 

turn out that Hilbert-Huang changes, with the valid 

reconstructed signals of natural mode can possibly 

reflect on the essential characteristics of the body 

vibration signals and figure to improve the control 

accuracy of driving control system to support 

caterpillar nodule collector’s running on the soft 

quality bottom of the sea. 
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