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Abstract: Structural reanalysis for defective systems and the near defective systems is discussed in this paper. 
Specially, by a relaxation factor embedded in the Combined Approximations (CA) approach and a frequency shift, 
the reanalysis problem of near defective systems with close eigenvalues can be transformed into one of defective 
systems with repeated ones, which is equal to the average of the close ones. Numerical examples show that the 
proposed method is effective and stable in reanalysis problem of near defective systems. 
 
Keywords: Close frequencies, generalized modal theory, structural modification, vibration system  

 
INTRODUCTION 

 
Structural modification of systems is an important 

research issue and has a wide range of applications such 
as vibration suppression, system design and control. In 
the structural dynamic optimization, the multiple 
repeated analyses are ones of the most costly 
computations. The need for efficient and accurate 
reanalysis technique in modern structural design is 
crucial because the designs become larger and more 
complex. 

In problems such as those of dynamic and 
symmetric structures, however, the corresponding 
matrices can have repeated eigenvalues. In structural 
dynamics reanalysis, it is by no means rare to encounter 
systems with multiple eigenvalues. Very often indeed, 
the geometric multiplicity of the eigenvalues is less 
than the algebraic multiplicity; systems of this type are 
called defective systems (Luongo, 1995). Defective 
systems, however, represent exceptional cases. More 
important, many systems with clusters of frequencies 
can occur in practical engineering, systems having close 
eigenvalues are encountered instead of perfectly 
coincident. For example, during system optimization, 
some originally separated frequencies can approach 
closer and closer. In these cases, if the associated 
eigenvectors make groups of nearly parallel vectors, the 
system can be classified as near defective system. From 
the view point of mathematics, the close eigenvalues of 
near defective systems are distinct, but the dynamic 
characteristic is still defective. Vibration modes with 
close frequencies, i.e. clusters of frequencies, often 
occur in some structural systems, including large space 

structures, multi span beams and some nearly periodic 
structures and symmetric structures (Chen, 2007). 
Therefore it is of great importance to research about the 
reanalysis problem of vibration modes of near defective 
systems for practical engineering. Chen treated the 
control problem of near defective systems well using 
the generalized modal theory based on the invariant 
subspace recursive method, but the number of actuators 
cannot less than that of closed eigenvalues (Chen et al., 
2001; Chen and Chen, 2003). 

In order to conduct structural modification or 
further research on the near defective systems, 
reanalysis should be performed on modified systems. In 
choosing a suitable reanalysis method, the following 
three factors are considered: the accuracy of the 
calculations, the computational effort involved and the 
ease of implementation. High accuracy, however, is 
often achieved at the expense of more computational 
effort. The CA approach is most suitable for efficient-
accurate evaluation of the structural response at various 
modified designs (Kirsch, 2000; Kirsch and Bogomolni, 
2007). 

This paper aims to solve structural modification 
reanalysis problems and give a solution to the problem 
of near defective vibration systems based on the 
advantage of shift-relaxation combined approximations 
approach. First, there is a brief review of the near 
defective systems. Then the generalized modal theory 
of defective systems is discussed, the introduction of 
relaxation factor is a kind of equivalent technique 
which makes it possible and effective to deal with the 
problems of the modified defective systems. The 
proposed method is feasible after overcoming the 
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difficulties of irreversible condition. Moreover, by 
frequency shift, the reanalysis problems of near 
defective systems with close eigenvalues can be 
transformed into one of the defective systems with 
repeated ones, which is equal to the average of the close 
ones. Finally, the results obtained by numerical 
examples prove that the proposed method is effective 
and promising to solve these kinds of problems briefly. 

 

PROBLEM FORMULATION 

 

The natural vibration equation of the general linear 

system is: 

 

 (1) 

 

where, M, C and Kare the mass, damping and stiffness 

matrices, respectively; r(t), ��(t)  and  ��(t) are vectors of 

displacement, speed and acceleration, respectively, t 

denotes time. 

We assume � are the eigenvalue of the system(1). 

The eigenvector corresponding to each eigenvalue is 

modal vector u. 

Assume that:  

 

                                  (2) 

 

in Eq. (2), In is the identity matrix and 0 is the zero 

matrix of the same order. Using the state vector: 

 

                                                  (3) 

 

We have the eigenproblem 

 

         (4) 

 

where, Ψ is the state vector. Denote 2n = N  briefly. 

In the following, we give the definitions for 

classifying the non-defective system and the defective 

system. The system must be non-defective if  is 

distinct eigenvalue or the algebra multiplicity of the 

eigenvalue  is equal to geometric multiplicity. The 

system must be defective if the algebra multiplicity of 

the eigenvalue  is greater than the geometric 

multiplicity, so the defective system has an incomplete 

set of eigenvectors to span the state space. 

    The defective system with repeated eigenvalues is ill-

conditioned because the dynamic characteristic is very 

sensitive to the parameters changes of the defective 

system and it can be changed into a near defective 

system with close eigenvalues. Therefore, an outline of 

development of reanalysis theory for near defective 

systems with close eigenvalues is necessary. 

SOLUTION FOR DEFECTIVE SYSTEMS  

BY CA METHOD 
 

As we mentioned before, there will not be a set of 
complete eigenvectors to span the corresponding space 
if A is a defective matrix. It means that the modal 

expansion theory in the non-defective system is invalid 
for the defective system. In this case, generalized modal 
theory is applied for solving the eigenproblems of 
defective systems. 

 

Generalized modal theory of the defective systems 
 

For the characteristic Eq. (4), from the algebra 
theory, it can be shown that there exists non-singular 

matrix Ψ, such that: 
 

                                                  (5) 

 

where. Ψ is the generalized modal matrix of the state 

matrix A, given by: 

 

  (6) 

 
Matrix J is a Jordan canonical form of A and mi is 

the multiplicities of eigenvalues �� . 
The conjugate and transpose of the state matrix A 

is called adjoined system, for A
H
  the generalized 

modes satisfy the following equation: 
 

                                                (7) 

 
where (.)

H
 denotes the conjugate transpose of the matrix 

and � is the generalized modal matrix of the adjoined 
system. 

    The right generalized modal matrix Ψ and the left 

generalized modal matrix � satisfy the following 
orthogonal condition: 
 

                                          (8)   

                                                                                        
It should be noted that for the linear vibration 

system with distinct or repeated eigenvalues, the system 
matrix A can be diagonalized by the similarity 

transformation: 
 

           (9) 

 
then the system must be non-defective. In this case the 

right generalized modal matrix Ψ and the left ones � 
are the complete eigenvectors and can be used to span 
the eigenspace. The defective matrix, however, can not 
be put into a diagonal matrix, there is a sub matrix ji of 
order (mi x mi), (mi > 1)  in J, at least. 
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   The eigenspace can be obtained by using normal 

methods for solving the linear equations if the system is 

non-defective, however, if the system is defective or 

near defective, that is, the eigenspace is incomplete or 

near incomplete, fatal mistakes may occur while 

computing the generalized modes. Therefore, it is 

important to give a reliable method for computing the 

generalized modes corresponding to defective and near 

defective systems.  

 

CA method for defective systems: For the purpose of 

improving the accuracy of the calculation and 

eliminating the numerical errors, the approximate 

modes and basis vectors for the defective systems are 

obtained with a suitable relaxation factor embedded in 

the CA method. 

For simplicity of presentation, suppose that the 

state matrix A has N repeated defective eigenvalues λ, 

and the Jordan canonical form J corresponding to A is:  

 

                                    (10) 

 

Then Eq.(5) can be rewritten as: 

 

                                         (11) 

 

where, B = (0, e1, …, eN-1). ei (1 ≤ i ≤ N −1) is the unit 

vector.  

The initial stiffness matrix K0 = A- �	  needs to be 

reversible in the CA method. In order to apply this 

method, we introduce a relaxation factor 
 ≠ 0 and 

then Eq. (11) is equivalent to: 

 

                    (12) 

 

Using the form Ψ = (Ψ�, Ψ�, … , Ψ� ) the 

characteristic equations are: 

 

      (13) 

 

If the structural parameters have small changes, 

such that the state matrix A has a change ∆A, for the 

modified state matrix A + ∆A, there exists a reversible 

matrix Ψ�  , such that: 

 

                                      (14) 

 

where, �� = � +  Δ�, �� = � +  Δ�, ��  is the new Jordan 

canonical form of the state matrix ��. 

Introduce the notation: 

 

,  (15) 

 

(14) and (15) lead to: 

 

                                    (16) 

 

Expand Eq. (16) and write it to the form of 

characteristic equations: 

 

            (17) 

 

The selection of relaxation factor should guarantee  

Lo (= A-�	 +  
	) is reversible. It is an equivalent 

technology and the value of 
 ≠ 0  does not affect the 

results. 

For i =1in Eq. (17), we can get the generalized 

eigenvector. Ψ�� 
 

    Based on the CA approach, we obtain: 

 

   (18) 

 

from (18), the basis vectors can be given by: 

 

              (19) 

     

The vector Ψ�� is a linear combination of the basis 

vectors Ψ��
� and the coefficient vectors yi, it follows 

that: 

 

          (20) 

 

where, the vectors of coefficient are to be determined: 

 

        
(21) 

 

Let 

 

 

 

Therefore, only to solve the smaller s × s system: 

 

                           (23) 

 

Can we get the vectors of coefficients yi and the 

computation is much less than the original Eq.(14). Put 

the  vectors  of  coefficient  to (20) and repeat the above 
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Fig. 1: Flowchart of solving defective systems 

 

iterative scheme for i = 2, 3, …, N, we get the 

generalized eigenvectors Ψ��. Summing up the above 

ideas, the modified generalized eigenvector matrix Ψ�  

can be obtained. 

By the analysis and discussion of the method, the 

whole idea for solving the problems with N repeated 

defective eigenvalues λ can be summarized into the 

flowchart in Fig. 1. 

The state matrix A contains N repeated defective 

eigenvalue λ is a special case, it is easy to implement 

compared with the general situation. That is, λ is the t − 
multiply (2 ≤ t ≤ N) defective eigenvalues, the rest 

eigenvalues are distinct, i.e., λ, …, λ, λi+1, λi+2, …, λN. 

Detailed analysis and calculation processes are given 

which can be used as an extension of this algorithm in 

other cases. 

 

SOLUTION FOR NEAR DEFECTIVE SYSTEMS 

BY SHIFT-RELAXATION CA METHOD 

 

The difficulties arise when the eigenvectors 

corresponding to the close eigenvalues are near linearly 

independent which cannot be obtained by the common 

computational methods. For this reason, we need to 

seek a method to deal with the reanalysis problem of 

the near defective systems. A new approximate 

algorithm, which is developed based on the CA 

approach with a relaxation factor and frequency-shift, is 

presented in this section as an efficient reanalysis 

method for the near defective systems. 

    Assume that N eigenvalues λ1, λ2 … λN of the state 

matrix A are close at first. The generalized modal 

matrices Ψ and � satisfies the Eq. (5), (7) and (8). 

According to the closed property of the eigenvalues, 

taking the algebra average of λ1, λ2 … λN : 

 

                                             (24) 

 

For simplicity, let 

 

        (25) 

 

the Jordan canonical form J can be expressed as: 
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The state matrix A can be written in the following form: 

 

(27) 

 

where, 

 

                   (28) 

 

Since the orthogonal transform cannot change the 

eigenvalues of matrix, the eigenvalues and the 

corresponding eigenvectors of �̅  are the same as those 

of  �.�  If λ1, λ2 … λN are closed eigenvalues and � =

max | �� −  �̅ |, it can be proved that ��  is an error 

matrix. 

Through the above analysis, it is observed that in 

the reanalysis problem of the near defective system, the 

matrix A can be expressed in terms of the defective 

matrix �̅ with N repeated eigenvalues and an error 

matrix �� . 

Assume that the parameter changes are introduced 

to the structure as %� = M+&M, '�= K+&', &% and &'  

represent changes due to the behavior of the structure. 

For the perturbed structure, there is a reversible matrix 

Ψ�  , such that: 

 

           (29) 

 

where, ��  is the new Jordan canonical form of state 

matrix A + &�. 

Let: 

 

                                           (30) 

 

Substituting Eq. (27) into (29) yields: 

 

                                       (31) 

 

Eq. (31) shows that by the skill of frequency shift, 

the analysis of the near defective systems with N close 

eigenvalues λ1, λ2 … λN has been transformed into ones 

of the defective systems with repeated eigenvalues, 

which is equal to the average of the close ones. Hence, 

the method discussed in section 3.2 for the defective 

systems can be used to deal with the reanalysis problem 

for the near defective systems. 

In generally, suppose that the t repeated 

eigenvalues of  A are close and the rest are distinct, i.e. 

λ1 = λ2 = … = λt = λ (2 ≤ t < N), λt+1, λt+2 … λN. In this 

case, the modal matrices Ψ and � in Eq. (7) and (8) can 

be partitioned by column as: 

 

                                             (32) 

 

,                                          (33) 

where, 

 

, 

, 

        

 

The Jordan canonical matrix of A in Eq. (6) can be 
written in the following matrix block form: 

 

                                          (34) 

 
where, 
 

 

  (35) 

 
Similar to (25), Jt  can be expressed as: 
 

     (36) 

 

As noted before, �̅ represents the algebra average 
of λ1, λ2 … λt. 
As a consequence: 
 

        (37) 

 
Similarly, the system has been transformed into 

one of the defective systems with t repeated eigenvalues 
and N-t distinct eigenvalues by the close eigenvalues 
shift. 
    More generally, if the eigenvalues of the state matrix 
A are consisted of t close eigenvalues, s multiple 
defective eigenvalues and N–t−s distinct eigenvalues, 
partitioning the modal matrices Ψ  and Φ by columns 
according to the property of the eigenvalues, then the 
problem can be solved similarly to the above steps. 
    The true percentage error in the approximate 

generalized eigenvectors Ψ��, relative to the exact ones 

Ψ�� 
, is defined as: 
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The quality of the approximation and the 

efficiency of the computation are usually two conflictin 

factors in selecting an approximate reanalysis method. 

The number of algebraic operations (multiplication and 

division) needed to solve an N × N set of equations is 

N
3
/3. The number of operations needed by the CA 

method is 3N
2
 s + Ns

2
 + s

3
/3, where the number of 

basis vector is. The total CPU effort involved in 

solution by the CA approach is usually much smaller 

than those needed to carry out complete analysis of 

modified designs. The proposed extended method not 

only makes it possible for the relatively complex near 

defective problems, but also obtains the higher 

efficiency of reanalysis. 

 

NUMERICAL EXAMPLES 

 

We give two examples to check the validity of the 

method. The first one with step-by-step illustrations of 

the algorithm will verify the correctness of the approach 

for defective systems. The second one validates further 

the proposed shift-relaxation CA method is efficient for 

near defective systems. 

 

Example 1: Assume the state matrix A and the 

perturbation matrix ∆A  are, respectively: 

 

 

 

 

 

 

Then the modified state matrix can be written as 

�� = � +  Δ� A is a defective matrix, by the method for 
the repeated defective system, we can get the modified 

generalized eigenvector matrix Ψ� . 
    The following diagram (Fig. 2) shows the 
relationship between the relaxation factor and the error 
with four basis vectors when solving for generalized 

eigenvectors form Ψ�� to Ψ�,. 
The example demonstrates the method does not 

depend on the value of the relaxation factor ω at all. To 
simplify the calculation, we usually take ω as a positive 
real number. The excellent results of the generalized 
eigenvectors can be easily obtained and are shown in 
Table 1. Here, we take the relaxation factors as ω = (5, 
5, 6, 7) and choose the number of basis vectors as four. 

From Table 1 it can be seen that the vibration 
reanalysis for defective systems discussed in Section 3 
is seen to yield good results and the stability can be 
guaranteed. 

 
Example 2: As an illustrative example in case of the 
near defective system with close eigenvalues, the 6 
Degree Of Freedom (DOF) spring-mass mechanical 
system shown in Fig. 3 is considered. It is assumed that 
only vibrations in the vertical plane are possible. 

The  components  of   the   mass   matrix   m of the 

system are: 

 
 

 

Fig. 2: Relationship between the relaxation factor and the error of generalized eigenvectors 
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Table 1: Error of generalized eigenvectors by the method

Mode 

1 

------------------------- 

2 

------------------------

case RCA* Exact RCA 

1 1.0000 1.0000 2.8000

2 1.0000 1.0000 0.8000

3 0.0000 0.0000 1.0000

4 0.0000 0.0000 0.0000

5 0.0000 0.0000 0.0000

 

Table 2: Mode shapes of spring-mass system using shift

 

1 

------------------------------------------

 Mode case SRCA* Exact

1  0.0001  0.0001

2 -0.0069 -0.0069

3  0.5575  0.5575

4 -0.4588 -0.4588

5 -0.4588 -0.4588

6 -0.5178 -0.5178

 

4 

--------------------------------------------

Mode case SRCA Exact

1 -0.1232 -0.1232

2 -0.8736 -0.8736

3  0.2254  0.2254

4  0.2389  0.2389

5  0.2389  0.2389

6  0.2380  0.2380

*SRCA represents the relaxation combined approximations method

 

 

Fig. 3: 6-DOF spring-mass system 

 

Fig. 4: Relationship between the relaxation factor and the 

corresponding error of generalized eigenvectors
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Table 1: Error of generalized eigenvectors by the method 

--------------------------- 

3 

--------------------------- 

 4 

 ------------------------- 

Exact RCA Exact  RCA  Exact 

2.8000 2.8000 6.4400 6.4400  3.8222  3.8222 

0.8000 0.8000 3.8400 3.8400  2.3268  2.3268 

1.0000 1.0000 3.8000 3.8000  1.8480  1.8480 

0.0000 0.0000 1.0000 1.0000  0.5601  0.5600 

0.0000 0.0000 0.0000 0.0000 -0.2000 -0.2000 

mass system using shift-relaxation CA method 

------------------------------------------ 

2 

----------------------------------------- 

3 

-----------------------------------------

Exact SRCA Exact SRCA 

0.0001  0.9954  0.9954 0.0038 

0.0069 -0.0923 -0.0923 0.0545 

0.5575  0.0095  0.0095 0.5769 

0.4588  0.0145  0.0145 0.4687 

0.4588  0.0145  0.0145 0.4687 

0.5178  0.0141  0.0141 0.4742 

-------------------------------------------- 

 5 

 --------------------------------------- 

6 

-----------------------------------------

Exact  SRCA Exact SRCA 

0.1232  0.0000  0.0000  0.0000 

0.8736 -0.0005 -0.0005  0.0000 

0.2254  0.0191  0.0191  0.0000 

0.2389 -0.5305 -0.5305 -0.7071 

0.2389 -0.5305 -0.5305  0.7071 

0.2380  0.6609  0.6609  0.0000 

*SRCA represents the relaxation combined approximations method 

 

 

Relationship between the relaxation factor and the 

generalized eigenvectors 

m1 = 20kg, m2 = 20kg, m3 = 20kg, m

20kg, m6 = 20kg. The elements of the stiffness matrix 

are given as: k1 = 200 N/m, k2 = 1700 N/m

N/m, k4 = 200 N/m, k5 = 850 N/m, 

system has two close eigenvalues i.e.

= 42.5000. The algebra of λ1, λ2 is: 

 

 
2

1

1
= 42.4903

2
i

i

λ λ
=

=∑   

 

by eigenvalues shifting, the vibration reanalysis of the 

near defective system with close eigenvalues can be 

transformed into a problem with repeated ones which is 

equal to the average value of the close ones.

In the following, we give the perturbation analysis 

of the system. The changed structure can be described 

as: m1 = 200 kg, m2 = 300 kg, m3 = 50 kg

m5 = 20 kg, m6 = 30 kg m, k1 = 1500 N/m

N/m, k3 = 200 N/m, k4 = 500 N/m, 

800 N/m. The solutions of the modified structure are 

shown in Table 2, which are obtained by 

relaxation CA method. 

The diagram (Fig. 4) gives the relationship 

between the relaxation factor and the error with four 

basis vectors when solving for generalized eigenvectors

near defective systems. The state vectors can be 

expressed by a combination of the basis vectors and 

order of solving equations is reduced.

examples show that the proposed method is effective 

and stable in reanalysis problems of the near defective 

systems.  

 5 

 ------------------------- 

 RCA Exact 

 5.2176  5.2176 

 2.7870  2.7870 

 2.5552  2.5552 

 0.5439  0.5439 

-0.0802 -0.0802 

----------------------------------------- 

Exact 

0.0038 

0.0545 

0.5769 

0.4687 

0.4687 

0.4742 

----------------------------------------- 

Exact 

 0.0000 

 0.0000 

 0.0000 

-0.7071 

 0.7071 

 0.0000 

= 20kg, m4 = 20kg, m5 = 

. The elements of the stiffness matrix 

= 1700 N/m, k3 = 1900 

, k6 = 850 N/m. The 

eigenvalues i.e., λ1 = 42.4805, λ2 

 

the vibration reanalysis of the 

with close eigenvalues can be 

transformed into a problem with repeated ones which is 

equal to the average value of the close ones. 

In the following, we give the perturbation analysis 

of the system. The changed structure can be described 

= 50 kg, m4 = 20 kg, 

= 1500 N/m, k2 = 200 

, k5 = 500 N/m
 
, k6 = 

. The solutions of the modified structure are 

shown in Table 2, which are obtained by shift-

The diagram (Fig. 4) gives the relationship 

between the relaxation factor and the error with four 

basis vectors when solving for generalized eigenvectors 

The state vectors can be 

expressed by a combination of the basis vectors and the 

is reduced. Numerical 

examples show that the proposed method is effective 

roblems of the near defective 
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