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Abstract: This study presents an overview of the acoustic wave equation and the common time-domain numerical 
solution strategies in closed environments. First, the wave equation is presented and its qualities analyzed. Common 
principles of numerical approximation of derivatives are then reviewed. Based on them, the Finite Difference (FD) 
and the Finite Element Methods (FEM) for the solution of the wave equation are presented along with algorithmic 
and practical considerations. 
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INTRODUCTION 

 
The sensation of sound is due to small variations in 

air pressure. The variations are governed by the three-
dimensional wave equation, a second-order linear 
partial differential equation, which relates the temporal 
and spatial derivatives of the pressure field. This study 
presents an overview of the wave equation and outlines 
the most common time-domain methods for its 
numerical solution; namely the finite difference and the 
finite element methods. 
 

THE WAVE EQUATION 
 

This section presents the wave equation and some 
of its qualities. We first introduce the nature of the 
solutions, then discuss the equation of motion along 
with boundary and initial conditions and conclude with 
a note on the Helmholtz equation. 

When determining the acoustic properties of an 
environment, we are actually interested in the 
“propagation of sound”, given the properties and 
location of a sound source. Sound waves themselves are 
small fluctuations in air pressure. In simple cases (in the 
absence of temperature gradients, for instance) these 
small fluctuations can be treated as small perturbations 
of an ambient pressure field. The propagation of these 
fluctuations is governed byte wave equation, which can 
be derived from purely mechanical considerations or 
from suitable simplifications of the more general 
equations of fluid dynamics (Pierce, 1989)? Solutions 
of the complete, non-linear equations of fluid dynamics 
are generally not required for acoustic purposes. 

The solution of the wave equation is a time-
dependent pressure field u(t, x), with x ∈ � and t>0. 

Here Ω denotes the set of points inside the environment 
to be simulated; in realistic situations Ω is three-
dimensional, but we shall often resort to lower 
dimensional examples for easier presentation. We stress 
that the solution u to the equations a scalar function 
over three spatial dimensions and time; the function 
describes the acoustic sound pressure for each point x 
in the environment for each t. This is the key difference 
between solutions of “normal” algebraic equations and 
differential equations; roughly speaking, the solutions 
of differential equations are themselves functions, while 
the solutions of normal algebraic equations are points 
within the domain of some equation-dependent 
function. 
 
The equation of motion and boundary conditions: 
The wave equation is a second-order linear partial 
differential equation: 
 ���= c2∆u + f 
 
With: 
 ��� = ������  ,   ∆= ∇ . ∇ = ��

�
� + ��
��� + ��

���              (2) 

 
Whose u is the pressure field (as described above) 

and c is the speed of sound, which we assume to be 
constant in the whole environment. The equation thus 
relates the second time derivative of the pressure to its 

spatial Laplacian ∆u. f = f (t, x) represents time 
dependent force terms, which we discuss soon. The 
equation is called a partial differential equation because 
it involves derivatives of the solution function u with 
respect to more than one variable. 
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Eq. (1) is in itself not uniquely solvable. In addition 

to this equation of motion, the behavior of the solution 

on the boundaries of the environment, which we denote 

by �� needs to be determined. These so-called 

Boundary Conditions (BCs) dictate how the walls of the 

environment reflect sound waves. Elementary types of 

boundary conditions prescribe either the solutions’ 

values or the values of the solution’s normal 

derivatives’ on the boundary. In this study we leave out 

most details on boundary conditions. We mentioning 

passing that it is possible to construct so-called 

absorbing BCs, which do not reflect any of the waves 

striking the boundary and the waves, appear to just 

leave the domain. 

Absorbing boundary conditions are useful in 

analyzing enclosures partly bounded but connected to a 

“large” open space. 

In addition to boundary conditions, initial 

conditions need to be specified. This means that for t = 

0, an initial pressure distribution u (0, x) and an initial 

velocity ��(0, x) distribution are required. 

The force term f(t, x) represents sources of 

distributions in air pressure; these are the sound 

sources. 4 Usually, an acoustics application solves the 

wave equation with describing an initial impulse. The 

solution of the wave equation then describes the time 

dependent propagation of the impulse in the 

environment. The solution u is anunivariate function (in 

t) for each x in the environment and can be used as an 

impulse response inan naturalization system. 

 

Dispersion: In the case of wave propagation, dispersion 

means that waves either travelling to different 

directions or having different frequencies propagate 

with different speeds. Dispersion can occur both 

naturally (in a dispersive medium) and artificially. The 

“pure” wave equation presented above is no dispersive, 

i.e., in the exact solution all waves, regardless of 

direction or frequency, propagate with the speed c. 

Unwanted artificial dispersion occurs in all numerical 

methods. The effects often include waves travelling 

along coordinate axes propagating slower than in 

diagonal directions and high-frequency waves 

propagating slower than lower-frequency waves. It is 

possible to analyze the dispersion introduced bya 

numerical method either directly by substituting certain 

“test waves” into the discredited equation by frequency 

domain analysis, Savioja (1999). 

 

The helmholtz equation: We briefly mention that 

separating variables in the wave equation, that is, 

searching for the solution u in the form: 

 � = ���� ���                                                       (3) 

 

leads to the so-called Helmholtz equation, sometimes 

called the reduced wave (Eq): 

∆�� + ���� = 0                                            (4) 

 

where, �is the frequency of an eigenmode and k2 = ω 

2/c2 is the wave number. Mathematically, the problem 

is about the eigenvalues of the Laplacian operator 

(Eriksson et al., 1996). For closed domains, solutions 

only exist for a countable set of different�; thesolutions �� for the corresponding wave numbers are the 

standing waves inherent to the geometry of the domain. 

The Helmholtz equation is the basis for a large number 

of numerical methods for computational acoustics; they 

are called spectral methods since they do not simulate 

time-dependent pressure fields but the responses of the 

environment to different frequencies instead. Since the 

focus on this study is in explicit time-domain methods, 

we do not discuss this further. 

 

FINITE DIFFERENCES 

 

The exact solutions to the wave equation discussed 

in the previous section are infinite dimensional that is, 

no finite number of parameters can fully describe the 

solution, excepting a very limited set of special cases. 

Since computers work with finite memories and per 

form only finite calculations, approximations must be 

made in order to solve the wave equation numerically. 

Here we stress that the complete, correct solution is 

generally unavailable to us in closed form. Numerical 

analysis deals, among other problems, with issues 

concerning discrete approximations to continuous 

problems; these include the methods used to discredited 

the solutions domains in both time and space, methods 

of solving the discredited versions of the equations and 

error analysis. 

 

Discredited derivatives: In this section we describe the 

simplest possible ways of discrediting derivatives of 

functions. 

We work in one dimension for simplicity. 

As an example we look at continuous, bounded, 

real-valued functions defined on the interval [0, 1]. In 

order to represent general functions, we might scatter a 

large but finite number N of equidistant points ��, with � = 1, …, N, inside the interval and store the value of 

the function in those points only. Even though this 

representation does obviously not correspond to a 

continuous function (generally speaking), we do have 

some idea of what the function is like. We denote the 

distance between two node points by h. Now, suppose 

that we are interested in the derivatives of the function 

which we have represented by point samples. Since we 

only know the function’s values at the node points ��, 
wemust somehow combine those values to obtain an 

estimate for the derivative. The simplest methods are 

suggested by the usual difference quotient that is used 

to define the derivative in the continuous case. This 

yields the approximations: 
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Fig. 1: Comparison of several difference approximations of 

sin(1/x) on the interval v [−0.2,−0.1] 

 

  ����  ≈  " �
#$%�& " �
%�'                       (5) 

  ����  ≈  " �
#�& " �
#(%�'  and                      (6) 

  ����  ≈  " �
#$%�&   " �
#(%��'                       (7) 

 

which are called forward difference, backward 

difference and central difference, respectively 

(Atkinson and Han, 2009). 

The Taylor series provides us an elegant 

approximation for the second derivative. The expansion 

gives us: 

  �� + ℎ� =   ��� + '%
*!  ′��� + '�

�!  ′′��� +',
-!  ′′′��� + .�ℎ/�                                                  (8) 

   �� − ℎ� =   ��� − '%
*!  ′��� + '�

�!  ′′��� −',
-!  ′′′��� + .�ℎ/�                                                  (9) 

 

from where adding the approximations side by side and 

dividing through with ℎ�we get: 

  ′′��� = "�
&'�&�"�
�1"�
1'�'�  + o(ℎ��                 (10) 

 

This is an accurate approximation; for smooth 

functions the error drops according to ℎ�. 

We also note that the central difference scheme in 

Eq. (7) follows from neglecting also the second order 

terms and subtracting the equations from each other. 

Figure 1 shows a comparison of the first order 

difference approximations of the function sin (1/x), 

plotted in blue, on the interval [-0.2, -0.1]. The example 

is arbitrary, with the function and range chosen so that 

the function is smooth (infinitely differentiable) on the 

interval. The figure illustrates the derivative 

approximations’ nature as linear combinations of 

samples from the original function and that the central 

difference scheme is more accurate than the other two. 

The original function has been artificially scaled up to 

show its form. 

 
Discrete differential operators: By writing values of 
the point samples of a function u as an N-dimensional 
vector �',the difference approximations of the last 
section can be written in a matrix form so that 
multiplication of the vector �'of function values with 
the matrix produces a new vector approximating the 
values of the derivative (or second derivative) at the 
node points. The semantics have banded structure; on 
each row, nonzero elements are only found on the 
diagonal and/or its immediate neighbors. As an 
example, the central difference and the second 
derivative approximations result in the matrices: 
 

 
 
So that 2'�' is a central difference approximation 

to the first derivative of the function u with samples 

placed ℎunits apart and  ∆'�' is the approximation of 
the second derivative in a similar fashion. Here the zero 
elements of the matrices have been left blank. The 
values for the ends of the interval are dependent on the 
initial and boundary conditions of the differential 
equation at hand and some special care needs to be 
taken in order to get the boundary values right. We not 
discuss this further. 

This point of view clearly demonstrates the fact 
that differentiation can be seen as an operator that acts 
on a function and produces another function, that is, the 
derivative of the original “input” function. When we 
deal with functions discredited as described earlier, the 
discredited differentiation operator is represented by a 
matrix. This is a consequence of differentiation being a 
linear operation in the continuous case5 
 
Spatial discretization of the wave equation by finite 
differences: Here we show how finite difference 
approximations can be used for discrediting the wave 
equation. We work in one dimension, but we keep in 
mind that the development is essentially the same for 
higher dimensions. 

By using the discredited representation ∆' for the 
second derivative we derive a semi discrete version of 
the one-dimensional wave equation; by substituting �' 

for u and ∆'�' for ∆� and noting that �

 = ∆� in one 
dimension we obtain: 
 �'′′ = ��∆'�' +  '                                          (11) 
 

where,  ' denotes the values of the function f in the 

node points and primes denote differentiation with 

-50

0

50

100

-0
.1

9

-0
.1

8

-0
.1

7

-0
.1

6

-0
.1

5

-0
.1

4

-0
.1

3

-0
.1

2

-0
.1

1

Sin (1/x)

d/dx sin  (1/x)

Backward difference 

Forward difference 

Central difference 



 

 

Res. J. Appl. Sci. Eng. Technol., 6(7): 1135-1143, 2013 

 

1138 

respect to time. Remarkably, this semi discredited form 

of the wave equation is no longer a partial differential 

equation, since the spatial Laplacian has been 

“reduced” into a matrix multiply; it is an ordinary 

differential equation in N unknowns with the unknown 

vector�', whose elements are the values of the solution 

function u at the node points ��. This equation can be 

solved with any standard method for 

integratingdifferential equations with respect to time. 
These methods are discussed in the following 

section. 
We also mention the digital waveguide methods for 

the solution of the wave equation. 
These methods are finite difference schemes with a 

digital signal processing point of view. The signal 
processing approach has many favorable qualities; these 
include e.g., 

The possibility of using frequency-dependent 
boundary conditions implemented by digital filters. The 
interpolated waveguide mesh of Savioja (1999) bears 
some resemblance to the finite element method. Savioja 
(1999) for an in-depth treatment of digital wave guide 
methods. 
 
Two- and three-dimensional problems: The one-
dimensional difference approximations discussed in the 
previous sections are easily extended to two or more 
dimensions. For instance, the gradient operator, define 

das ∇= � ��
 ���� in 22 and ∇= � ��
 ��� ���� in 32, is easily 

implemented with one-dimensional finite differences 
along each coordinate axis. In a similar fashion, the 
Laplacian operator-see Eq. (2)-takes the form: 
 ∆�5�676 ≈ �6��1*,   9�&��6��,   9�1�6��&*,   9�'�   

+
�6��,91*�&��6��,9�1�6��,9&*�'� = �6��1*,   9�1�6��&*,   9�1�6��,   91*�1 �6��,   9&*�&/�6 ��,   9�'�    (12) 

 
in two dimensions, where we have assumed that the 
two-dimensional domain has been discretized into a 
regular grid of points, so that the values of the function 

u are now stored in a matrix (in stead of a vector) �', so 
that �'(�ℎ, :ℎ)≈���, :�. For simplicity, we have 
assumed the same discretization parameter h for both 
dimensions. The three-dimensional case is analogous. 
Writing the difference approximation from Eq. (12) into 
a matrix form (as above) presents some difficulty due to 
uh now being a matrix instead of a vector as in the one 
dimensional case. Still, as the approximation is again a 
linear combination of the elements of �', a similar 
matrix representation does exist (Eirola, 2002). This is 
achieved by firststacking the columns of uh into a long 
column vector, after which it is straight forward to 
derive the required matrix expressions. After this 
modification the semi discretized wave equation in two 
or more dimensions is exactly the same as Eq. (11), the 
one dimensional case. 

TIME INTEGRATION 

 

This section presents the necessary tools for 
obtaining a fully discrete solution of the wave equation 
by time stepping. The process is called integrating the 
differential equation. To this end, we first write the 
semi discredited equation as a first-order system of 
differential equations and after those present different 
time-stepping methods for solving the first-order 
system. We conclude by some remarks on stability of 
the numerical solutions. 
We first recall the semi discretized equation: 
 

;�'′′ = ��∆'�' +  ' ,                � ∈ ��<=�>?�.@  .   A.?�.@�   �'�., �� = �'B���,               ��@�?�>5 �.@C�?�.@   .D �'��'′ �., �� = E'B���,           ��@�?�>5 �.@C�?�.@   .D �'′ � F 
 

where, �'G and H'G are predefined functions defined over 
the spatial discretization. In addition, the problem-
dependent boundary conditions need to be specified. 
This is a second order system of ordinary differential 
equations in N unknowns. 

Most integration methods work on first-order 
differential equations. This poses no problems, since all 
higher-order problems can be transformed into first-
order ones by introducing new variables. To transform 
the semi discredited wave equation into a first order 

system, we define a new variable H'= 
I�6I�  so that Eq. 

(11) takes the form: 
 

;IJ6I� = ��∆'�' +  'I�6I� = H'
F 

 
This has the effect of doubling the number of 

unknowns, since we are now left with two vectors of 

length N to solve for. We can further simplify the 

system (13) by concatenating the vectors �'and H' into 

a new vector w so that we get: 

 I�I� = K L + M ,     With                                      (14) 

 

W = [�'H'] ,  g= [
. '] ,   A = P . Q��∆' .R,  and w(o) = 

[
�'BH'B]   

 

where, each element of A, printed in bold, denotes a 

N×N sub matrix and I denotes the identity matrix. This 

is the simplest possible form for a first-order, linear 

system of differential equations. 

The numerical solution of the above system is a 

discrete sequence L�, k SN, of vectors corresponding to 

values of the solution w at different timesteps. We 

choose to use a constant timestep T for simplicity, so 

that we have L� ≈ L�?��, where ?�= T�. 
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Similarly, we denote M�T��by M�. To make description 

of the integration methods in the next subsections still 

simpler, we make use of a more abstract formulation. In 

general, any first-order system of differential equations 

6 can be written as: 

 L′ �?�  =  C�?, L�?��                                         (15) 

 

Eq. (14) maps to this representation by: 

 C�?, L�?�� = KL�?�  +  M�?�             (16) 

 

This more abstract form (15) is most suitable for 

describing integration methods. 

 

Explicit methods: The most obvious integration 

method for the system (15) is the Euler method. It 

follows from substituting the forward difference 

scheme from above section into (15), yielding: 

 �U$%&�U
V = C�?� , L�� ⇔ L�1* =  TC�?�, L�)+L�  

 

Substituting for d from (16) we have: 

 L�1* =  T�KL� + M�� + L� = �TK + Q�L� + TM�          (17) 

 

This method has the advantage of simplicity, but in 

practice it is not used much, because it is highly 

unstable. We come back to stability issues in the end of 

the section. 

The Euler method is the simplest one in the class of 

methods generally referred to as explicit Runge-Kutta 

methods. The classical Runge-Kutta method, often 

referred to as the Runge-Kutta method, is one of them. 

All the higher-order R-K methods work by subdividing 

the time interval into smaller sub-time steps, achieving 

variable orders of accuracy. The Euler method performs 

worst of these methods. 

 

Implicit methods: So-called implicit methods help 

overcome stability problems often associated with 

explicit schemes. The difference between explicit and 

implicit methods is best illustrated by the implicit Euler 

method, which follows from substituting the backward 

difference approximation into: 

  �U&�U(%
V = C� ?�, L�� ⇔ L� = TC�?�, L�) + L�&* 

 

and after manipulating the indices we have: 

 L�1* =  TC�?�1*, L�1*� + L�                           (18) 

 

and substituting for d we finally get: 

 L�1* =  T�KL�1* + M�1*� + L� 

⇔ (Q − TK� L�1* =  L� +  TM�1* ⇔L�1* = �Q −  TK�&*�L� +  TM�1*�             (19) 
 

The scheme works by “borrowing” the future value 
for w in the evaluation of the functioned. The 
seemingly innocent switching from forward to 
backward differences has yielded a significantly 
different difference scheme; one that requires a matrix 
inversion. (Note that when the timestep_ is constant, the 
inversion only has to be done once.) The implicit Euler 
method is still simple and has the virtue of 
unconditional stability. 

The most accurate first-order implicit scheme is the 
Crank-Nicolson method7. It is an application of the 
central difference scheme and its idea is to evaluate the 
function d in the middle of the timestep, with respect to 
both time and the solution w. The scheme is defined as: 

 �U$%&�U
' = C X*� �?� + ?�1*�, *� �L� + L�1*�Y  

 
Substituting d from (16) as before we have: 

 L�1* = L� + *� TK�L�+L�1*)+TM Z?� + V�[ ⇔ZQ − *� TK[ L�1* = ZQ + *� TK[ L� +TM Z?� + V�[ ⇔L�1* = � Q − *�  TK�&* \ZQ + *� TK[ L� +TM?�+T2 

 
As is obvious, the increased accuracy over the 

implicit Euler method comes at the price of a more 
laborious timestep, since one additional matrix multiply 
now has to be performed. 

Again, if Tis constant, the matrices have to be 
formed (and the other inverted) only once. 
 
Stability: The continuous, exact solutions of the wave 
equation have the property of energy conservation. 

That is, if the boundaries of the environment are 

fully reflecting, the solution oscillates infinitely, with 

its energy content8 staying constant, if we let f ≡0. 
This is animportant property and numerical methods 
perform differently with respect to it. 

If a numerical method allows the energy of the 
discretized solution to grow without bound as time 
passes, the method is called unstable. We only state 
briefly that the magnitudes of the eigenvalues of the 
matrices used in the explicit iteration schemes 
determine constraints on the maximum possible 
timestep size. The eigenvalues’ magnitudes have a 
dependence on h, so that these constraints usually 
dictate the maximum allowable time step for a given 
level of discretization. With larger time steps the 
solution is soon ruined by high-magnitude noise as 
calculation errors build up in an uncontrollable fashion. 
Implicit methods are unconditionally stable. Eirola 
(2002) for   a    treatment   in    practice,   the   time step 
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restrictions imposed on explicit methods are so 
stringent that the additional computation per time step 
required by implicit methods is outweighed by the gains 
from using larger time steps. 

 

THE FINITE ELEMENT METHOD 
 

The Finite Element Method (FEM) is a general 

method for solving both ordinary and partial differential 

equations. In this section we show how it can used for 

solving the wave equation. Our approach is not the only 

possible one, since our derivation ends up (again) in a 

system of ordinary differential equations, which we 

solve by the methods presented earlier-another 

approach would be to use a FEM formulation also for 

the time-dependent ordinary differential equation. 

The general ideas behind the FE method rely 

heavily on concepts of so-called Hilbert and Sobolev 

spaces. We develop the method from bottom up and do 

not present these more advanced concepts. 

 

Introduction: FEM takes a fundamentally different 

approach from the point-evaluation based finite 

difference methods described earlier. The idea is to 

seek for the solution as a finite linear combination of 

basis functions, so that the linear combination is, in a 

sense, the “best approximation” to the real solution 

from this finite-dimensional set of functions. 

Basis functions are best described by an example, 

again in univariate functions on the interval [0, 1]. 

Suppose that we have scattered N node points x_ onto 

the interval, just as before. Now, we define a “hat” 

function ∅_�x� corresponding to each x_; the hat 

function 8 We skip the details of defining the energy 

content in a formal way Takes the value 1 at x_ and 

ramps linearly to 0 towards x_&* and  x_1*. Now, define 

an N-vector ζ , with its components denoted ξ_ and let: 

 ���� =  ∑ b�∅����c�d*                                         (21) 

 

Figure 2 shows an example with eleven nodes, the 

corresponding piecewise linear basis functions and an 

example linear combination of the basis functions. The 

linear span of the basis functions is a vector space in the 

sense that the sum of any two such functions is again a 

function which can be represented in the same way. 

By the support of a function we mean the smallest 

set outside which the function is identically zero. The 

functions in the previous example are defined piecewise 

and they have small supports. This has computational 

advantages, as will become obvious after we have 

formulated the full finite element method in the next 

sections. However, the development itself does not rule 

out use of functions with global supports, meaning 

functions that are nonzero on the whole 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Illustration of piecewise linear “hat” functions on the interval [0, 1] and their linear combinations. The hat functions 

themselves are nonzero only at their corresponding nodes and between the adjacent nodes to both directions. Their linear 

combinations (in red), on the other hand, define piecewise linear functions on the whole interval 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

0.2

0.4

0.6

0.8

1.0

1.2

“Hat” function on (0,1) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

0.2

0.4

0.6

1.2

1.4

1.6

An example linear 
combination of hat functions 

0.8

1.0

1.8

2.0

φ

I

t

t

A piecewise linear basis 
function in a triangulation 

(from Eriola, 2002)



 

 

Res. J. Appl. Sci. Eng. Technol., 6(7): 1135-1143, 2013 

 

1141 

domain. For instance, all polynomials on the whole 

interval [0, 1] have global supports, as well as the usual 

trigonometric polynomials sin (2e��), with k SN. Also, 

piecewise polynomial functions find common use in 

FEM applications; the “hat” functions of the example 

are 1st order piecewise polynomials. To be completely 

precise, the name finite element method is used only if 

locally supported basis functions are used; the more 

general case is the Galerkin method. 
The two-and three-dimensional analogue to our hat 

function example is to scatter points inside the domain 
Ω and construct a triangulation of them in 2D or a 
tetrahedralizationin 3D. The piecewise linear functions 
now take a form where the functions have value1 at the 
corresponding node and ramp to zero linearly inside the 
triangles (or tetraedra) associated with the node. Also 
higher-order piecewise polynomials can be used. 
(Globally supported basis functions cannot be used in 
non-simple higher-dimensional geometries because of 
incompatibilities with the boundary conditions. This is 
a more advanced topic, and will not be pursued here.) 

We also mention that triangles or tetraedrae are not 
the only possible geometrical primitives that can be 
used for constructing the basis functions. For instance, 
quadrilaterals and parallelepiped on may be used with 
piecewise bilinear or bicubic functions, respectively. 

 
Variational formulation of the wave equation: In this 
section we will show how to search for the solution to 
the wave equation as a linear combination of basis 
functions. Since the solutions are time-dependent, we 

will make the coefficient vectorb time-dependent also, 
so that the spatially discretized solution has theform �'�?, �� =  ∑ b��?�∅���� ≈ �.c�d*  

To start off, we move all the terms of the wave 
equation onto the other side and get: 
 ��� − ∆� −  = 0                             (23) 

 
Now, let V denote the set of bounded, continuous 

functions defined on having piece wise continuous first 
derivatives (gradients in higher dimensions) and 
fulfilling the spatial boundary conditions of the 
problem. (We note that the “hat” functions, used as 
examples in the previous section, are members of V, 
when Ω = [0, 1], neglecting boundary conditions.) 

V is obviously infinite-dimensional and the exact 
solution u to (23) is also a member of this space9. The 
fundamental theorem of calculus of variations 
(Guenther and Lee, 1996) states that if we multiply Eq. 
(23) by any function in V and integrate the product over 
Ω , we must still get 0: 
 ∫g���� − ∆� −  �HC� =. , ∀� SEG                    (24) 

 

The goal of the following development is to 

simplify this equation in this general case and then in 

the end to switch focus to a finite-dimensional subspace 

H'of vspanned bythe basisfunctions ∅����. This will 

allow us to write out a linear system of equations forthe 

unknown coefficients ζ(t). 

It is easy to verify by Gauss’ divergence theorem10 

that: 

 ∫gH∆�C� =  −∫g∇J . ∇iC� + ∫�gH∇� . @Cj    (25) 

 

where Cj is an area element on ��. Applying this result 

to Eq.(24) we have: 

 ∫g����H + ∇�. ∇H −  H�C� − ∫�gH∇� . @ Cj = 0,∀H SE                                                                 (26) 

 

which is called the variational formulation of the wave 

equation. The solutions to (26) are called weak 

solutions to the wave equation. Classical theory of 

partial differential equations shows that any sufficiently 

smooth u that solves (26) is also a classical solution of 

the wave equation (Eirola, 2002). 

Now we approach the heart of the matter. 

Substituting the approximation (22) into (26) and 

requiring that (26) only holds for the members ∅� of H'(and not the “full” V ) yields: 

 ∑ b�′′c�d* ∫g∅����∅����C� +∑ b�c�d* ∫g∇∅���� . ∇∅����C� −                         (27) ∑ b�c�d* ∫�g∅����∇∅���� . @ Cj =∫g ���∅����C�,             ∀∅�S E'                        (28) 

 

where, we have used: 

 �'′′ = ∑ b�c�d* �?�′′∅����, ∇�'  =  ∑ b�c�d* �?�∇∅����  

 

with primes denoting differentiation with respect to 

time. We have also switched the order of summation 

and integration in the terms. Because Vh is finite 

dimensional, (27) is actually a set of N linear equations 

(one for each ∅�, with k = 1, . . . , N) for the coefficient 

vector b.  Hence it can be written in a matrix form as: 

 b ′′K + bk − bl =                       (29) 

 

with: 

 K�9 = ∫g∅����∅9��� C�,k�9 =  ∫g∇∅���� .  ∇∅9���C�,                               (30) 

 l�9 =  ∫�g∅����∇∅9���. @ Cj, >@C  9 = ∫g   ���∅9���C�.                                                 (31) 

 

Again, we are left with a linear system of ordinary 

differential equations, for which all the time integration 

methods described in section 4 apply directly. 
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As mentioned before, the sizes of the supports of 
the basis functions affect the computational load 
associated with FEM. The cost of evaluating the 
integrals in the expressions for the above matrices’ 
elements benefits from locally supported functions, 
since small supports mean small nonzero regions in the 
integrands. 

 
A teaser: In the previous section we derived a spatial 
discretization of the wave equation as a linear 
combination of a finite number of prescribed basis 
functions. We have left out most of the mathematical 
structure that helps to understand the FE method from a 
more geometrical viewpoint because of lack of space. 
We do still mention a remarkable property; the finite 
element solution to the wave equation is optimal in the 
sense of a certain squared difference between the real 
solution and the approximate one, which means that no 
other linear combination of the basis functions could 
achieve a smaller error in this least squares-sense. This 
is quite surprising, considering that we do not have 
knowledge of the exact solution! This fact is best 
explained by stating (albeit cryptically) that the finite 
element solution is an orthogonal projection of the 
exact solution onto the finite dimensional linear span of 
the basis functions. For more information on vector 
spaces of functions, see for instance (Kreyszig, 2007). 

 

DISCUSSION 

 
The previous sections have shown how the wave 

equation can be reduced into a system of ordinary 
differential equations either by finite difference 
approximations or by the finite element method. This 
section discusses some practical aspects of the methods 
presented above and outlines some differences between 
them. 

 
Solution of large linear systems: In general, time 
integration requires solution of linear systems at each 
time step. These systems are generally very large, 
routinely in the order of several millions of unknowns. 
It is clear that direct solution, e.g., by Gaussian 
elimination, of the resulting equations is not feasible. 
The rescue lies in iterative methods, which do not 
manipulate the matrix(as Gaussian elimination does), 
but instead work by starting from an initial guess vector 
for the solution and then improving upon it in a 
successive series of iterations, until some degree of 
convergence is reached. Classical iterative methods 
include the Jacobi and Gauss-Seidel iterations. So-
called Krylov subspace methods, such as the 
conjugategradient method, search for the solution in the 

span of {�, K�, K��, …}, where � is the initial guess and 
A is the matrix in the problem. Golub and Van Loan 
(1996) for anin-depth review of iterative methods. 

 
Differences between the methods: The key difference 
between the finite difference method and FEM lies in 

the composition of the matrices. Once the matrices have 
been formed, the time stepping solution to the wave 
equation proceeds similarly. 

Generally, the matrices inherent to the finite 

difference method have regular coefficients for nodes 

inside the domain; that is, all the nodes behave 

numerically in the same way. The matrices of FEM are 

more irregular, since their elements are integrals of the 

basis functions’ products and in general domains the 

basis functions do not form a regular structure. This 

makes construction of the FEM matrices much more 

involved than that of finite difference matrices. 

Boundary conditions need special treatment in the 

finite difference method; detailed calculations on how 

to discretize different types of BCs are required. As 

stated earlier in the FEM section, the space V, from 

where the solutions are being searched for, is defined 

such that the basis functions “fulfill the boundary 

conditions” in a certain way; the rest of the BCs are 

enforced weakly in the form of the boundary integral in 

Eq. (27). In other words, FEM incorporates boundary 

conditions into its formulation in a unified way that 

alleviates some of the need for their special treatment. 

Also, generation of the triangulations and 

tetraedralizations used frequently in FEM applications 

is far from trivial and a wealth of research on the 

construction and quality of the subdivisions exists. 

Finite difference methods rely on structured grids and 

hence are not dependent on such algorithms. 

 

Practical considerations: The methods presented 

above solve for the sound field inside an enclosure in a 

rigorous way, i.e., the error in the solution can be made 

arbitrarily small (bound, of course, by machine 

precision) by adding more discretization nodes, using 

higher-order basis functions (FEM) or higher-order 

derivative approximations (FD) and using better time 

integrators. 

Despite the correctness of the algorithms, direct 

application of these methods does not yield a practical 

system for solving for the impulse responses, at least if 

the whole frequency range of human hearing is to be 

simulated. This is obvious from geometryalone; 

depending on the particular method used, the spatial 

discretization needs 6-10 nodes per wavelength in order 

to resolve the frequencies faithfully. At 22 kHz one 

wavelength is approx. 1.5 cm and thus the spacing 

between the nodes needs to be 1.5-2.5 mm. Thus, one 

cubic meter of space needs to be filled with64-300 

million nodes and this translates directly to the same 

number of unknowns to solve for in the simulator. Here 

from it is obvious that full frequency range simulation 

of spaces of realistic size is as of yet completely 

unfeasible and some hybrid methods combining direct 

numerical simulation by wave field decomposition 

techniques (such as the image source method) must be 

utilized. For reference, modern scientific 
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computinguses meshes with up to ten million elements. 

If a rectangular room with a 45 m
3 

volume was 

discretized with ten million elements, the average 

density of mesh points would be approx. 15 cm, 

corresponding to a maximum frequency of 220-370 Hz 

only. Clearly, direct numerical simulation of acoustic 

phenomena in the whole frequency range remains out 

of our grasp at present. This is perhaps not too 

unfortunate, since for instance the image source method 

augmented by edge diffraction sources produces an 

exact solution for planar geometries 12.  
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