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Abstract: Independent Component Analysis (ICA) is a computational method to solve Blind Source Separation 
(BSS) problem. In this study, an improved Fast ICA based on eighth-order Newton’s method is proposed to solve 
BSS problems. Eight-order Newton’s method for finding the solution of nonlinear equations is much faster than 
ordinary Newton’s iterative method. The improved FastICA algorithm is applied to separate sound signals. The 
simulation results show the method has fewer iterations and faster convergence speed. 
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INTRODUCTION 

 
Independent Component Analysis (ICA) or Blind 

Source Separation (BSS) is a signal processing method 
that extracts statistically independent components from 
a set of measured signals (Hyvarinen, 1998; Lee et al., 
1999; Ye et al., 2006). There are various ICA 
approaches including maximum likelihood estimation 
(Shia et al., 2004; Cardoso, 1998), mutual information 
minimization (Amari et al., 1996; Bell and Sejnowski, 
1995; Pham, 2004) and negentropy maximization 
(Hevarinen et al., 2001). The FastICA algorithm was 
presented by Hyvarinen (1999). A kind of Newton-type 
algorithm was used in FastICA and the algorithm was 
based on fixed-point algorithm iteration to maximize 
nongaussianity as a measure of statistical independence. 
In FastICA algorithm, the Newton iteration method 
with two-order convergence was employed in a fixed-
point algorithm for estimating the separation matrix. 

In this study, we first briefly introduce ICA 
algorithms with Kurtosis and negentropy contrast 
function. Then, an improved FastICA based on an 
eighth-order convergence Newton’s Method (Li et al., 
2011) is proposed. Using this new algorithm, the update 
equations inside the FastICA algorithm is developed for 
estimating separation matrix with less iterative. Then, 
the new algorithm is applied to separation sound 
signals. Finally, the performance of the newalgorithm is 
compared with FastICA algorithm in terms of evaluate 
performance rate and convergence rates. 

 
INDEPENDENT COMPONENT ANALYSIS  

AND FASTICA 
 

Independent Component Analysis (ICA) has 
become a powerful method for signal processing in last 

decade (Cichochi and Amari, 2004; Hevarinen et al., 
2001; Chio et al., 2005). The basic linear mixture 
model (without noise) for ICA is as follows: 

 
  X = AS                (1) 

 

where, S = (S�, … , S
)� denotes the original 

independent sources and X = (X�, … , X
)� denoted 
mixtures of original sources and A is the unknown m × n constant mixing matrix. ICA aims to recover or 
estimate the independent components (ICs) from their 
mixtures. An estimated IC is denoted by y and a 
separation vector is denoted byw, such that 
 y = w�X = w�AS                                                (2) 
 

The signal mixtures tend to have Gaussian 
probability density functions (pdfs) and the source 
signals have nongaussianpdfs (Stone, 1999). In terms of 
central limit theorem (CLT), Gaussian signals often 
consist of a mixture of nongaussian signals (Stone, 
1999). Given a set of such Gaussian mixtures 

signal X = (��, … , ��)�. Therefore, the process of ICA 

is to find source signal by finding separation vector � 

that extract signal �, which has to be the most 
nongaussian. One of the classic measures for estimation 
of nongaussianity of random variable is Kurtosis. We 

denote the Kurtosis of y by ����(�) and it is defined 
by:  
 ����(�) = ����� − 3(���"�)"                           (3) 
 

where, � is a random variable with zero mean. If � is 

normalized, variance of � is equal to one i.e.���"� = 1. 

Then, (3) is simplified to: 
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����(�) = ����� − 3                                         (4) 

 

Negentropy for Nongaussianity: An important 

measure of nongaussianity is negentropy. The concept 

of negentropy strongly depended on entropy that it is 

another fundamental concept in information theory. 

Given � as a discrete value random variable, Entropy $ 

for random variable � is defined by: 
 $(�) = − ∑ &(� = '(( ) ln &(� = '()                (5) 
 

In Eq. (5), the '( are the value of random variable � and & is density function of the random variable � 
(Cover and Thomas, 1991; Papoulis, 1991). 

The definition of entropy for continues random 
variable is obtained from generalizing (5). Given � as a 
continue random variable with density function &*(.). 
The differential entropy $ for continues random 
variable � is defined by: 
 $(�) = − + &* (,) ln(,)-,                (6) 

 
Let that � as a vector random variable. Negentropy 

of � is showed by .(�) and is defined by: 
 .(�) =  $/�012334 − $(�)                                 (7) 

 

where, �01233is gaussian random variable with same 

covariance of the �. Negentropy is another measure for 
nongaussianity. But, for the estimate of negentropy, we 
must first estimate the pdf of the vector random 
variable. Therefore, it is very hard to obtain it from the 
computation. One method to approximate negentropy 
by nonpolynomial function was proposed by Hyvarinen 
(1998). In related to this study, a method using 
expansion of pdf to approximate negentropy was given 

by Hevarinen et al. (2001). Let � be a whitened random 

variable. Then, approximate of .(�) was given: 
 

 .(�) ∝ (��7(�)� − ��7(8)�)"               (8) 
 

where, G is a nonquadratic function and variable 8 is a 
gaussian variable with unit variance and zero mean. 

Note that "proportion to" is the means of symbol ∝ . In 
order to achieve a very strongly estimator, choose G 
that grow slowly. Whereby: 
 

7�(�) =  �
19 log cosh ?� �                                      (9) 

 

 7"(�) = − exp C− DE
" F                                      (10) 

 

and 1 ≤ ?� ≤ 2 (Hevarinen et al., 2001). 
 
A fixed-point algorithm using negentropy: A 
FastICA algorithm based on maximizing negentropy 
was introduced by Hyvarinen (1999). In this algorithm, 
fixed-point iteration and Newton’s method with two-

order convergence is used to find separation � vector 
as follows:  
 

� ← � − JKLM0/NOM4PQRNS
TKU0׳/NOM4VQRW                    (11) 

 
where, � is separation vector, X is function as Eq. (9) 
and (10), Y is the whitening observation vector, Z = �L�[\]� YX/�[\]� Y4Pand �[\]  corresponds to 

optimum � . Equation (11) can be simplified by 

multiplying both sides byZ − �UX׳(��Y)Vand: 

 

� ← �UX׳(��Y)V − �^YX(��Y)_�                   (12) 

 
Let � is a vector random variable. Assume that Y is 

given by the whitening of �. the fixed-point algorithm 
using negentropy is given as follow (Hevarinen et al., 
2001): 
 
Step 1 :  Let ` = 0 and �(0) is an initial random 

vector with unit norm 
 
Step2 : Let �(`) = �^YX(�(` − 1)�Y)_ −

�UX׳(�(` − 1)�Y)V�(` − 1)             (13) 

  

Step 3 :  Let �(`) = N(b)
‖N(b)‖             (14) 

 
Step 4 :  If the algorithm is not converged, then ` = ` + 1 and go back to step 2. 
 

From this algorithm, we obtain one component. 
Therefore, in order to estimate several independent 
components, the algorithm needs to be run for several 
times.  

 
EIGHT-ORDER NEWTON’S METHOD 

 
The classic Newton’s method for single nonlinear 

equation can be expressed as follows: 

 

'�e� = '� − f(gh)
f׳(gh)                           (15) 

 

This is an important and basic method, which 

converge quadratically.Pota and Petak (Potra and Ptak, 

1984) proposed a modification Newton’s method with 

third-order convergence defined by: 

  

       
 '�e� = '� − f(gh)efighQj(kh)

j׳(kh)l
f׳(gh)               (16) 

 
King (1973) developed a one- parameter family of 

forth-order methods, which is written as follows: 
 

�� = '� − f(gh)
f׳(gh)                                                 (17) 
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'�e� = �� − f(gh)eRf(Dh)
f(gh)e(RQ")f(Dh)

f(Dh)
f׳(gh)                       (18) 

 

Such that ∈ R . Many methods have been proposed 
to improve the order of convergence such as (Kou, 
2007;  Chun,  2007;  Parhi and Gupta, 2008; Bi et al., 
2008). 

Li et al. (2011) proposed an eighth-order Newton’s 
method convergence defined by:  

 

��e� = '� − f(gh)efighQj(kh)
j׳(kh)l

f׳(gh)                            (19) 

 

o�e� = ��e� − f(2hp9)
f׳ighQ j(kh)

j׳(kh)l
                  (20) 

 

'�e� = o�e� − f(qhp9)
f׳(qhp9)                                       (21) 

 
It is observed that this method required less 

number of iterations then traditional Newton’s method: 
 

IMPROVED FASTICA USING EIGHTH-ORDER 

NEWTON’S METHOD 
 

With regards to Eq. (11) can be derived new 
equations for estimating the separation matrix (un-
mixing matrix) by using Eq. (19) until (21) as follows: 
 

� ← �q − KLM0/NrOM4PQRNr
KU0׳/NsOM4VQR                   (22) 

 
Such that:  
 

�q ← �2 − KLM0/NsOM4PQRNs
KU0׳/NtOM4VQR                                      (23) 

 

 �2 ← � − KLM0/NOM4PQRNeKLM0/NtOM4PQRNt
KL0/NOM4PQR                 (24) 

 

�D ← � − KLM0/NOM4PQRN
KU0׳/NOM4VQR                                         (25) 

 
Equations (22) to (25) can be simplified to: 
 

� ← �^YX(�q�Y)_ − �UX׳(�2�Y)V�q                    (26) 

 
where, 
 

�q ← �^YX(�2�Y)_ − �UX׳/�D�Y4V�2               (27) 

 �2 ← �^YX(��Y)_ + �LYX/�D�Y4P −         �^X(��Y)_� + Z�D                                         (28) 

 

�D ←  �^YX(��Y)_ − �UX׳(��Y)V�                 (29) 

and Z ∈ u in (28) will be updated in every iterations 

by β = �^��YX(��Y)_ . Hence, we propose following 

fixed-point algorithm for estimate the separation 

matrix: 

 

Step1: Let v = 0 and given �w as an initial random 

vector with unit norm. Assume β =�^�w�YX(�w�Y)_ 

Step 2: Let: 

 

 ��e� = �^YX(�q�Y)_ − �UX׳(�2�Y)V�q             (30) 

 

where, 

 

�q = �^YX(�2�Y)_ − �UX׳/�D�Y4V�2                (31) 

 

�2 = �^YX(���Y)_ + �LYX/�D�Y4P −
        �^X(���Y)_� +         Z�D                                  (32) 

 

�D =  �^YX(���Y)_ − �UX׳(���Y)V��            (33) 

 

Step 3:   ��e� = Nhp9
‖Nhp9‖ 

Step 4: If the algorithm is not converged then, β =�^��e�� YX(��e�� Y)_, v = v + 1 ?v- go back 

to step 2. 

 

SIMULATION RESULTS 

 

We used three sound signals from MATLAB 

database as shown in Fig. 1. Each size of simple signals 

is 1000. These source signals were randomly mixed. 

The mixed signals are shown in Fig. 2. After whitening 

the mixed signals, we ran the proposed improved 

FastICA algorithm to separate the mixed signals .The 

results are shown in Fig. 3. 

 
 
Fig. 1: Three source signals          
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Fig. 2: Three mixed signals 

 

 
 
Fig. 3: Separation the signals 
 

Table 1: Comparison of the separation performance 

NO  1 2 3 4  5 6 

FastICA   0.2156 19340 0.1873 0.1721  0.1964 0.2143 

Improved 

algorithm 

 0.2155 19350 0.1871 0.1724  0.1961 0.2146 

 

Table 2: Comparison of iteration numbers and CPU system 

 Fast ICA Improved algorithm 

The 1th  component 23.11 2.35 

The 2th  component 9.45 4.71 

The 3th  component 4 3.2N 

Total iteration 6824. 10.26 

CPU time 0.2412 sec. 0.1381 sec. 

 

We can also get the same result when using the 

Fast ICA algorithm (Hevarinen et al., 2001). In order to 

measure the accuracy of separation, we calculated the 

performance index (Amari et al., 1996; Shi and Zhang, 

2006). 

 &x = �
�E L∑ �&x( + ∑ y&xz�z{��({� P   =

                �
�E |∑ }∑ ~\��~


���|\��| − 1�z{� ��({� +
                �=1v�=1v���max`�`�−1             (34) 

 

where, �&x( = ∑ ~\��~

���|\��| − 1�z{�  and y&xz =

}∑ ~\��~

���~\��~

�({� − 1� in which �(z  is the ijth element of 

v × v matrix & = ���, where �is a separation matrix, � is a whitening matrix and � isa mixing matrix. The 

large value &x is the poor statistical performance of the 
BSS algorithm (Amari et al., 1996; Shi and Zhang, 
2006). These algorithms were run six times to evaluate 
their performances. The   results  are  presented in 
Table 1. Whereby the separation performance of 
proposed algorithm is almost the same as the FastICA 
algorithm. Furthermore, we compared the convergence 
speed of these two algorithms. We randomly ran each 
of these two methods for 15 times executively. We then 
calculated the average iterative numbers and presented 
in Table 2.  

As a result, the improved Fast ICA algorithm 
performances with less iteration than Fast ICA, while 
maintaining comparable separation performance. This 
is due to the fact that convergence of eighth-order 
Newton’s method is much faster than the traditional 
Newton’s method with second-order convergence to 
find the solution for non-linear equation. To calculate 
the CPU time, two algorithms 15 times was run by 
using the MATLAB version R2010 on the Intel(R) 
Core(TM) 2 DUE CPU T6400 2.00 GHZ processor 
with 2.00 GB RAM. Table 2 describes iteration 
numbers and the CPU times required for sound signal 
separation from three mixed sound signal, whereby the 
average CPU times are 0.2412 s and 0.1381s, 
respectively. This demonstrated that the proposed 
method exhibited faster convergence with less iteration 
than Fast ICA algorithm, with comparable separation 
performance. 

 

CONCLUSION 

 

In this study, improved Fast ICA using eight-order 

Newton’s method was proposed for BSS. The 

separation performance of the proposed algorithm was 

almost the same as the Fast ICA algorithm. Besides 

that, the mixed sound signal was separated by new 

algorithm with fewer iteration and faster convergence 

than the Fast ICA. 
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