
Research Journal of Applied Sciences, Engineering and Technology 6(10): 1774-1779, 2013 

DOI:10.19026/rjaset.6.3902     

ISSN: 2040-7459; e-ISSN: 2040-7467 

© 2013 Maxwell Scientific Publication Corp. 

Submitted: October 22, 2012                       Accepted: December 20, 2012 Published: July 20, 2013 

 

Corresponding Author: Ahmad Mahir Razali, Centre for Modelling and Data Analysis (DELTA), School of Mathematical 
Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, 
Selangor D.E., Malaysia 

This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/). 

1774 

 

Research Article 
The Probability Distribution Model of Wind Speed over East Malaysia 

 
1
Nurulkamal Masseran, 

1, 2
Ahmad Mahir Razali, 

1, 2
Kamarulzaman Ibrahim,  

2, 3
Azami Zaharim

  
and 

2
Kamaruzzaman Sopian 

1
Centre for Modelling and Data Analysis (DELTA), School of  
Mathematical Sciences, Faculty of Science and Technology,  

2
Solar Energy Research Institute (SERI),  

3
Head of Project Group of Renewable Energy Resources Analysis,  

Policy and Energy Management, Renewable Energy Niche, Universiti  
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor D.E., Malaysia 

 

Abstract: Many studies have found that wind speed is the most significant parameter of wind power. Thus, an 
accurate determination of the probability distribution of wind speed is an important parameter to measure before 
estimating the wind energy potential over a particular region. Utilizing an accurate distribution will minimize the 
uncertainty in wind resource estimates and improve the site assessment phase of planning. In general, different 
regions have different wind regimes. Hence, it is reasonable that different wind distributions will be found for 
different regions. Because it is reasonable to consider that wind regimes vary according to the region of a particular 
country, nine different statistical distributions have been fitted to the mean hourly wind speed data from 20 wind 
stations in East Malaysia, for the period from 2000 to 2009. The values from Kolmogorov-Smirnov statistic, 
Akaike’s Information Criteria, Bayesian Information Criteria and R

2
 correlation coefficient were compared with the 

distributions to determine the best fit for describing the observed data. A good fit for most of the stations in East 
Malaysia was found using the Gamma and Burr distributions, though there was no clear pattern observed for all 
regions in East Malaysia. However, the Gamma distribution was a clear fit to the data from all stations in southern 
Sabah. 
 
Keywords: Goodness of fit, spatial pattern, wind energy, wind regime, wind speed distribution  

 
INTRODUCTION 

 
In wind turbine design and site planning, the 

probability distribution of wind speed becomes 
critically important in estimating the energy production 
(Morgan et al., 2011) It has been defined in engineering 
practice, the average wind turbine power, ��� associated 
with the Probability Density Function (PDF) of wind 
speeds, X is obtained from: 
 

( ) ( )
0

ˆ
w wP P X f X dX

∞
= ∫                                      (1)

 

 
where,  
f (X)  = The PDF of X 
Pw (X) = The turbine power curve that is used to 

describe the power output of wind speed 
 
Generally, Pw (X) is defined as a proportion of the area 
of the airstream, measured in a plane perpendicular to 
the direction of the wind speed: 

( ) 31

2
wP X A Xρ=   

 
where, 
A = The area 
ρ = A constant for air density 
 
Morgan et al. (2011) stated that the largest uncertainty 

in estimation of ��� lies in the choice of wind speed 

PDF, f (X), since the turbine manufacturer can measure 

Pw (X) fairy accurate. Thus, the utilization of a more 

accurate wind speed PDF will minimize the uncertainty 

in wind resource estimates and improve the site 

assessment phase of planning. 

Wind speed distribution has been explored 

successfully by several scientists with 2-parameter 

Weibull and Rayleigh distributions are often quoted as 

popular distribution for wind speed. However, several 

authors have indicated that the Weibull and Rayleigh 

distribution should not be used in a generalized way, as  
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they  fail  to  represent  some  wind  regimes  (Carta and  

Ramirez, 2007; Brano et al., 2011; Jaramillo and Borja, 

2004; Safari, 2011). For example, Brano et al. (2011) 

investigated 7 probability density functions employed 

to describe wind speed frequency distributions: 

Weibull, Rayleigh, Lognormal, Gamma, Inverse 

Gaussian, Pearson type V and Burr. The Burr 

distribution was the most reliable statistical distribution. 

Jaramillo and Borja (2004) showed that the Mixed 

Weibull distribution is more appropriate than the 2-

parameter Weibull distribution for regions where wind 

speed presents a bimodal PDF. Safari (2011) used 5 

probability distribution functions to fit wind speed data 

from 4 wind stations in Rwanda: Weibull, Rayleigh, 

Lognormal, Normal and Gamma. His results showed 

that Weibull and Gamma were the most suitable 

distributions. More research on wind speed distribution 

has been conducted by Carta et al. (2008, 2009), Zhou 

et al. (2010) and Celik (2003) and etc. 

Among the early works on wind energy research in 

Malaysia is the work by Sopian et al. (1995). They have 

analyzed data from 10 wind stations in Malaysia and 

used the Weibull distribution. Their results indicated 

that Mersing and Kuala Terengganu possess the best 

potential for wind energy development. Masseran et al. 

(2012) investigated the persistence of wind speed in 

Peninsular Malaysia using the stationary properties of 

time series and the wind speed duration curve. Their 

results revealed that Chuping wind station had the most 

persistent wind speeds, compared to other stations. 

However, data from Mersing wind station are the most 

persistent for the level of wind speed suitable for 

generating energy. In addition, Ong et al. (2011) noted 

that a 150 kW wind turbine, which was built in 

Terumbu Layang-Layang in 2005, demonstrated some 

success. However, Tenaga Nasional Berhad (TNB), 

which is the only electricity supplier in Malaysia, built 

two units of wind turbines at Pulau Perhentian. 

Additionally, the Ministry of Rural and Regional 

Development built 8 small units of wind turbines in 

Sabah and Sarawak for local communities (Ong et al., 

2011). 

In this study, we focus on determining the best 

statistical model that describes the wind regime in East 

Malaysia. This model provides vital information for the 

assessment of wind energy potential. 

 

Study area, regional climate and data: East Malaysia 

is a country that lies entirely in the equatorial zone, 

situated on the island of Borneo, with a geographic 

coordinate of 2° 30' north latitude and 119° 30' 

east longitude. Throughout the year, East Malaysia 

experiences a wet and humid climate with daily 

temperatures ranging from 25.5 to 35°C. The wind that 

blows across East Malaysia is influenced by the 

northeast monsoon that occurs from November until 

March. East Malaysia is also influenced by the effect of 

sea breezes and land breezes, especially when the sky is 

clear. During the afternoon, sea breezes occur with a 

speed of 10 to 15 knots, while land breezes occur at 

night. The data used in this study consist of hourly wind 

speeds (km/h) from 20 wind stations across the country. 

The collection period was from January 2000 to 

November 2009. Data were obtained from the 

Department of Environment and Malaysian 

Meteorology Department. 

 

METHODOLOGY 

 

Wind speed probability distribution (Table 1): To 

describe the behavior of wind speed at a particular 

location, it is necessary to identify the distribution that 

best fits the data. Suitable distributions for each wind 

station were determined by fitting nine types of 

statistical distribution to the data: Weibull (WE), Burr 

(BR), Gamma (GA), Inverse Gamma (IGA), Inverse 

Gaussian (IGU), Exponential (EX), Rayleigh (RY), 

Lognormal (LN) and Erlang (ER). Here, ER is simply a 

special case of Gamma distribution, where the shape 

parameter is an integer. Table 1, lists the probability 

density functions with their respective cumulative 

distribution functions (Morgan et al., 2011; Carta and 

Ramirez, 2007; Carta et al., 2009; Zhou et al., 2010; 

Evans et al., 1993). 

 

Maximum likelihood estimator (Table 2): In this 

study, parameter estimation for each model was 

performed using the maximum likelihood method. The 

Maximum Likelihood Estimator (MLE) for the 

parameters of the WE, GA, IGU, ER, IGA and BR 

distributions can be determined numerically using 

methods such as Newton-Rapson, scoring, EM 

algorithm, quasi-Newton and the Nelder-Mead method. 

In this study, the Nelder-Mead method was used as an 

optimization technique for determining the MLE (R 

Development Core Team, 2008). For other 

distributions, such as LN, RY and EX, the MLEs can be 

easily determined. After the parameter estimation 

process, several goodness of fit tests were used to 

determine the most suitable statistical distribution for 

the data from each wind station. Goodness of fit tests 

included Kolmogorov-Smirnov (KS), Akaike’s 

Information Criterion (AIC) and Bayesian Information 

Criterion (BIC). In addition, the R
2
 correlation 

coefficient was also used to evaluate the goodness of fit 

for each method. A large R
2
 value indicates a good fit 

of the theoretical distribution to the data. 

 

The Kolmogorov-Smirnov statistic (KS): To 

determine the suitable probability distribution of wind 

speed from each station, the Kolmogorov-Smirnov test 

was calculated by comparing the cumulative
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Table 1: List of probability density functions and cumulative distribution function 

Model Probability Density Function (PDF) Cumulative Distribution Function (CDF) 

 Lognormal (LN) ( )2

2

ln( )1
( ) exp

22

x
f x

x

µ
σσ π

 − −
=  

  

 1 1 ln( )
( )

2 2 2

x
F x erf

µ
σ

− 
= +      

where, erf  = Complementary error function
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x x
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α α α
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,
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where, γ ( ) = Lower incomplete gamma function.  

Inverse Gaussian (IGU) 
 

1
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3 2

( )
( ) exp

2 2

x
f x

x x

λ λ µ
π µ
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where, Ф ( ) = Standard normal distribution. 

Burr (BR) 1

1
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1 ( / )

a

q
a a

aqx
f x
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Inverse Gamma (IGA) 
1( ) exp

( )

p
pf x x

p x

β β− −  = − Γ  

 ( ),

( )
( )

p
x

F x
p

βΓ
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where, numerator is upper incomplete  gamma function   

 
Table 2: The maximum likelihood estimator for all theoretical distributions  

 Maximum Likelihood Estimator (MLE)  Maximum Likelihood Estimator (MLE) 
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distribution for the observed data to the cumulative 
distribution for the fitted data. The empirical 
distribution function Fn for n observations is defined as: 
 

1

1
( ) 2

i

n

n X x

i

F x I
n

≤
=

= ∑
                                                 (2) 

 

where, ��� ≤ � is an indicator function. Indicator 

function equals to 1 if Xi≤x and 0 otherwise. The 
Kolmogorov-Smirnov statistic for a given theoretical 
cumulative distribution function F (x) is given by: 
 

sup | ( ) ( ) | 3n n
x

D F x F x= −
                                     (3) 

 
where, sup x is the supremum of the set of distances 
between Fn and F (x). If the sample comes from 
distribution F (x), then Dn will almost surely converges 
to 0. To implement Kolmogorov-Smirnov statistic test, 
the information about their theoretical cumulative 
distribution function, F (x) need to be known (Shorak 
and Wellner, 1986). The list of theoretical Cumulative 
Distribution Function (CDF) for each distribution is 
shown in Table 1. 
 
Akaike’s Information Criteria (AIC): The AIC is a 
tool used for model selection. It is defined in terms of 
an appropriate information criterion. The AIC offers a 
relative measure of the information lost when a given 
model is used to describe reality. The AIC uses a 
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mechanism that assigns a score to each candidate 
model. The model with the minimum AIC value is 
selected as the best fit model. The AIC usually be used 
to measure the goodness-of-fit for a statistical model. 
The AIC is not a hypothesis test of the model; rather, it 
provides a means for comparison among models. The 
AIC general formula is given by: 

 

AIC= -2log( )+2 4L k
                                            (4) 

 

where,  

L : The likelihood  

k : The number of parameter in the fitted model 

(Burhnam and Anderson, 2002; Hirotugu, 1974)  

 

The AIC acts as penalizes based on the log-likelihood 

criterion, affording a balance between a good fit and 

complexity. The model with the minimum AIC value is 

the preferred model. The AIC was used in this study 

because of its mathematical reason related to the 

maximum likelihood estimators (Claeskens and Hjort, 

2010). 

 

Bayesian Information Criteria (BIC): The BIC is 

another set of model selection criteria that chooses the 

candidate model with the highest probability, given the 

data. Gideon E. Schwarz developed the BIC using the 

Bayesian framework. The BIC uses the prior 

probabilities and the prior densities of all parameter 

vectors in the different models to select a model. It is 

closely related to the Akaike information criterion. The 

BIC is also known as Schwarz’s Bayesian Criterion 

(SBC). The formula for BIC is given by: 

 

BIC= 2 log( ) log( ) 5L k n− +
                                 (5) 

 

where,  

L  = The likelihood 

k  = The number of parameters  

n   = The number of observations in the fitted model 

The BIC takes the form of a penalized log-likelihood 

function, where the penalty is equal to the logarithm of 

the sample size times the number of estimated 

parameters in the model (R Development Core Team, 

2008; Claeskens and Hjort, 2010; McQuarrie and Tsai, 

1998). The model with the minimum BIC value is 

selected. In this study, the BIC and AIC scores were 

compared with the results from the Kolmogorov-

Smirnov test statistic. 

 

Evaluating the goodness of fit: The R
2
 correlation 

coefficient was used to evaluate the goodness of fit for 

each method. A larger R
2
 value indicates a better fit of 

the theoretical distribution to the data. R
2 

was used for 

goodness-of-fit comparisons because it quantifies the 

correlation between observed probabilities and the 

predicted probabilities from a distribution. The R
2
 

coefficient is determined as: 

 

( )

( ) ( )

2

2 1

2 2

1 1

ˆ

ˆ ˆ

n

i

i

n n

i i

i i

F F

R

F F F F

=

= =

−
=

− + −

∑

∑ ∑
                           (6) 

 

where, 1

ˆ
n

i

i

F

F
n

==
∑

. The estimated cumulative 

probabilities, 	
, were derived from the cumulative 

distribution function of the proposed model. A large 

value of R
2
 indicates a good fit of the model’s 

cumulative probabilities, 	
, to the empirical cumulative 

probabilities, F. The R
2
 coefficient has been used by 

other researchers in similar studies to measure goodness  

of  fit  methods  (Morgan  et  al.,  2011; Carta et al., 

2008, 2009). 

 

RESULTS AND DISCUSSION 
 

Table 3 provides the results from the goodness of 

fit statistics, the associated R
2
 values and the selected 

 
Table 3: The result of goodness of fit tests found based on Kolmogorov Smirnov test, Akaike’s information criterion, Bayesian information 

criterion and the selected distribution (in bold and italic) for each station 

St. 

Goodness-of-fit method 

------------------------------------------------------------------------------- 

St. 

Goodness-of-fit method 

-------------------------------------------------------------------------- 

KS  R2 (%) AIC R2 (%) BIC R2 (%) KS R2 (%) AIC R2 (%) BIC R2 (%) 

1 GA 98.11 GA 98.11 GA 98.11 11 BR 98.36 GA 98.10 GA 98.10 

2 BR 99.34 GA 99.20 GA 99.20 12 GA 96.97 WE 97.32 WE 97.32 

3 GA 99.62 GA 99.62 GA 99.62 13 GA 98.28 GA 98.28 GA 98.28 

4 BR 99.43 BR 99.43 BR 99.43 14 BR 99.46 GA 98.85 GA 98.85 

5 WE 99.53 BR 99.54 WE 99.53 15 GA 99.29 GA 99.29 GA 99.29 

6 WE 99.09 GA 99.90 GA 99.90 16 GA 98.98 GA 98.98 GA 98.98 

7 GA 99.30 GA 99.30 GA 99.30 17 BR 99.25 BR 99.25 BR 99.25 

8 BR 98.77 GA 98.66 GA 98.66 18 GA 99.48 GA 99.48 GA 99.48 

9 GA 99.08 GA 99.08 GA 99.08 19 ER 99.38 WE 99.24 WE 99.24 

10 WE 99.86 WE 99.86 WE 99.86 20 GA 97.13 GA 97.13 GA 97.13 
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Fig. 1: The spatial distribution of wind speed over East Malaysia 

 
distribution to describe the data for each station. Based 
on the results for all distributions and with respect to all 
goodness of fit methods, all R

2
 values were found to be 

greater than 0.97, indicating that these distributions fit 
the data well. However, for the purpose of selecting the 
best distribution, we used the largest value of R

2
. The 

Weibull, Gamma, Erlang and Burr distributions were 
found to be the most suitable for explaining the hourly 
mean speed in East Malaysia. The most frequent 
distribution was selected based on the highest number 
of    stations   that   were   successfully   fit   using   that 
particular  distribution.  Based on results shown in 
Table 2, GA was the most frequently selected 
distribution: it provided the best fit to wind speed 
observations at 12 stations. The second most frequently 
selected distribution was BR. Six stations were 
successfully fitted with the BR distribution. This was 
followed by WE and ER, which were found to 
adequately fit the data observed at 1 station each. 
However, LN, EX, RY, IGA and IGU did not result in a 
good fit to the distribution of wind speed at all stations. 
A map of East Malaysia is provided in Fig. 1, which 
clearly shows the pattern of suitable statistical models 
that describe the wind regime. Data from most of the 
stations in the Sabah region (especially northern Sabah) 
were best fit to the Gamma distribution. A variety of 
different statistical distributions were observed for data 
from other regions. 
 

CONCLUSION

 

 
The Gamma distribution is the distribution that 

most frequently adequately described the distribution of 

wind speed at the 20 stations considered in this study. A 
variety of different statistical distributions were 
observed in East Malaysia, except for northern Sabah, 
where the Gamma was the best fit distribution for all 
stations in that area. However, we suggest that a more 
comprehensive analysis needs to be conducted in the 
future. More stations should be included to obtain a 
better understanding of wind speed in East Malaysia 
before the effort is made to assess wind energy 
potential. 
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