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Research Article 
Homogeneous Turbulence in a First-order Reactant for the Case of Multi-point and  

Multi-time Prior to the Final Period of Decay in a Rotating System 
 

M.A. Bkar PK, M.S. Alam Sarker and M.A.K. Azad 
Department of Applied Mathematics, University of Rajshahi-6205, Bangladesh 

 

Abstract: Using Deissler’s approach, the decay for the concentration of a dilute contaminant undergoing a first-
order chemical reaction in homogeneous turbulence at times prior to the final period of decay in a rotating system 
for the case of multi-point and multi-time is studied. Here two and three point correlations between fluctuating 
quantities have been considered and the quadruple correlations are ignored in comparison to the second and third 
order correlations. Taking Fourier transform the correlation equations are converted to spectral form. Finally, 
integrating the energy spectrum over all wave numbers we obtained the decay law for the concentration fluctuations 
in a homogeneous turbulence prior to the final period in a rotating system for the case of multi-point and multi-time. 
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INTRODUCTION 

 
The mathematical models that describe chemical 

reaction kinetics provide chemists and chemical 
engineers with tools to better understand and describe 
chemicals processes such as food decomposition, 
stratospheric ozone decomposition and the complex 
chemistry of biological systems. The essential 
characteristic of turbulent flows is that turbulent 
fluctuations are random in nature. In geophysical flows, 
the system is usually rotation with a constant velocity; 
such large scale flows are generally turbulent. The 
Coriolis Effect is caused by the rotation of the Earth 
and the inertia of the mass experiencing the effect. The 
most commonly encountered rotating reference frame 
in the Earth. Because the Earth completes only one 
rotation per day, this force causes moving objects on 
the surface of the Earth to appear to change direction to 
the right in the northern hemisphere and to the left in 
the southern and it has great significance in 
Astrophysics, Stellar dynamics, Earth sciences. 

 
Meteorology, physical geology and oceanography: 
Following Deissler’s approaches (Deissler, 1958, 1960) 
the two-point; two-time correlations are obtained by 
considering the equation for the concentration of a 
dilute contaminant undergoing a first order chemical 
reaction. In order to solve the equations for the final 
period, the triple order correlation terms are neglected 
in comparison to the second-order ones. Loeffler and 
Deissler (1961) used the theory, developed by Deissler 
(1958, 1960) to study the temperature fluctuations in 
homogeneous turbulence before the final period. In the 
study of homogeneous fluid turbulence a method is 

describing theoretically the concentration fluctuations 
of dilute contaminant a first order reactant prior to the 
ultimate phage of decay by Kumar and Patel (1974) 
they studied the first order reactants in homogeneous 
turbulence for the case of multi-point and single time 
consideration. Kumar and Patel (1975) extended their 
problem (1974) for the case of multi-point and multi-
time concentration correlation. In Sarker and Kishore 
(1991), studied the decay of MHD turbulence at times 
before the final period using Chandrasekhar’s relation 
(Chandrasekhar, 1951). Islam and Sarker (2001) studied 
the first-order reactant in MHD turbulence before the 
final period of decay for the case of multi-point and 
multi-time. PK et al. (2012) studied the first-order 
reactant in homogeneous dusty fluid turbulence prior to 
the ultimate phase of decay for four-point correlation in 
a rotating system. Corrsin (1951) obtained the spectrum 
of isotropic temperature fluctuations in isotropic 
turbulence.  

In our present study, we studied the fluctuation of 
concentration of a dilute contaminant undergoing a 
first-order chemical reaction in homogeneous 
turbulence prior to the final period of decay in a 
rotating system for the case of multi-point and multi-
time. Here, we have considered two-point and three-
point correlation equations and solved these equations 
after neglecting fourth-order correlation terms. Finally 
we obtained the decay law of energy fluctuations of 
concentration of dilute contaminant undergoing a first 
order chemical reaction in homogeneous turbulence in a 
rotating system for the case of multi-point and multi-
time comes out to the form:  
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where, 〈��〉 denotes the concentration fluctuation 
energy. It is seen that the demolition of the impurity is 
more rapid than that in the case of pure mixing. This 
result has been shown in the figure also.   
 

MATERIALS AND METHODS 
 
Basic equation: The differential equation governing 
the concentration of a dilute contaminant undergoing a 
first-order chemical reaction in homogeneous fluid 
turbulence in a rotating system could be written as: 
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The subscripts can take on the values 1, 2 and 3. 
 
Here,  
����	
 = A random function of position and time at a 

point p  
����	, 

 = Turbulent velocity 
R = Constant reaction rate 
D = Diffusivity  
t = Time 
εmki = Alternating tensor 
Ωm = Constant angular velocity components 
���	, 

 = Pressure fluctuation 
� = Fluid density 
v = Kinematics viscosity 
uk = Turbulent velocity component 
xk = Space-coordinate and repeated subscript in a 

term indicates a summation of terms, with 
the subscripts successively taking on the 
values 1, 2 and 3  

 
Tow-point, two-time correlation and spectral 
equations: Under the restrictions that:  
 

• The turbulence and the concentration fields are 
homogeneous  

• The chemical reaction and the local mass transfer 
have no effect on the velocity field  

• The reaction rate and the diffusivity are constant, 
differential equation governing the concentration of 
a dilute contaminant undergoing a first-order 
chemical reaction we take the Navier-Stokes 
equations at the point P and the concentration 

equation at P′ and separated by the vector �̂ could 
be written as:  
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where, ���	, 

 is a random function of position and 
time. The other symbols are as usual.  

Multiplying Eq. (2) by X', Eq. (3) by X and 
averaging, we get:  
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where, the conditions of continuity and the fact that the 

quantities at a point at a particular time are independent 

of the positions at the other points have been utilized.  

Using the transformations: 
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in to Eq. (4) and (5), we obtains:  
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In order to reduce Eq. (6) and (7) to spectral form 

by using three-dimensional Fourier transform:  
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We get:  
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Solution for the ultimate phase of decomposing 

turbulence: For the ultimate phase of homogeneous 

turbulence decompose, the third-order correlations can 

be ignored in comparison to the second-order 

correlations, with this approximation, the solutions of 

Eq. (10) and (11) may be obtained as:  
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For consistent solution of Eq. (12) and (13) we must 

have:  
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where, G (k) = 2���� is the concentration spectrum 

function. We evaluate ƒ (k) by Corrsin (1951) i.e., ƒ (k) 

= Nok
2
|π. where, N0 = A constant depend on initial 

condition. Thus, we obtain:  
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By integrating Eq. (15) with respect to k, we obtain: 
 

),ˆ( mtrXX ′  = 
2/3

2/1

)(44 om

o

tt

DN

−π
 exp  

 






















−

+−
−

)(8

)(2 2

om

om

ttD

rttC                    (16)                                                

 
where, tm = t + ∆t/2.                          
 
Three-point, three-time correlation and equations: 
Under the same assumptions as before, we take the 
Navier-Stokes equation for homogeneous fluid 
turbulence in a rotating system at the point P and the 

concentration equations at P′ and P′′ as: 
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Multiplying Eq. (17) by X′X′′, (18) by uiX'' and 
(19) by uiX'

 
and then taking space averages, we obtain: 
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Using the transformations:  
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Into Eq. (20) to (22), we get: 
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Using the six-dimensional Fourier transform of the 

type:  
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and the assumption that the quintuple correlations 

representing the transfer terms in Eq.  (23) to (25) can 

be neglected as they decay faster than the lower-order 
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correlation terms. Then the Eq. (23) to (25) in Fourier 

space can be written as:  
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where, Ns = v/D, the Schmidt number 

As the pressure force terms are related to higher-

order correlations, therefore, these along with the 

quadruple correlations are also neglected.  

Integrating Eq. (26) to (28) between to and t, we obtain: 
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For these relations to be consistent, we have: 
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where, the subscript 0 refers to the value of ψi  at t = to, 

∆t = ∆t′ = 0 and θ is the angle between k and k'. The 

relation between ϕi and ψi is given by:  

 

kdtktkkttkk iiii
′′∆=∆ ∫

∞

∞−

),0,ˆ,,ˆ(),,ˆ( ψφ          (30) 

 

Substituting Eq. (30) and (29) into Eq. (10), we obtain: 
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where, dk' is written as kddk ′′ )(cos2 2 θπ  and the 

quantity (ψi)0 depends on the initial conditions of the 

turbulence. Now, following Deissler (1958, 1960), we 

take:  
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Substituting Eq. (33) in (32) and completing the 

integration, we get: 
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This represents the transfer function arising due to 

the consideration of concentration at three-point and 

three-time. When ∆t = 0 and R = 0, the expression for 
reduces to the case of pure mixing. It may also be noted 

that (for ∆t = 0): 
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This means that the conditions of continuity and 

homogeneity are satisfied. Physically, it was to be 
expected as W is a measure of the energy transfer and 
the total energy transferred to all wave numbers must 
be zero.  
With the help of Eq. (31) and (34), one can get: 
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As in the previous section, by integrating Eq. (36) 

with respect to k, we obtain:  
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where, T = t - to. For Tm = T + ∆T/2 Eq. (37) becomes: 
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If  ∆t = 0, then Eq. (38) reduces to the form: 
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Thus, the decay law for the concentration energy 

fluctuation of homogeneous dusty fluid in a rotating 
system prior to the ultimate phase may be written as: 
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RESULTS AND DISCUSSION 

 
It is noted that y1, y2, y3, y4, y5, y6 and y7 are 

solution curves of Eq. (40) but in the absence of coriolis 
force  y1,  y2,  y3,  y4, y5, y6, y7 are represented by  
Eq. (41) at the different values of chemical reaction 
respectively which indicated in the figures. In Eq. (40) 
we obtained the concentration fluctuation energy decay 
of homogeneous fluid turbulence in a rotating system. 
In the absence of corriolis force i.e. if the frame is non-
rotating then Eq. (40) becomes: 
 

〈��〉 { }52/3

m )exp(-2RT −− += mm BTAT                    (41)   

                                                                     
Which was obtained earlier by Kumar and Patel 

(1975). For large times, the last term of Eq. (41) 
becomes negligible and the decay law for the ultimate 
period becomes exp (-2RTm) (AT

-3/2
m) which in the case 

of pure-mixing is similar to the law obtained by Corrsin 
(1951). 

In Fig. 1 to 4, we observe that the variation of 
chemical reaction (R = 3.5, 1.75, 0.875, 0.44, 0.22, 0.11 
and 0) causes significant changes in the concentration 
fluctuation decay of energy of homogeneous fluid 
turbulence in presence of corriolis force F = 2.75, 1.50, 
0.75 and 0, respectively. It is mentioned that the energy 
decay of the fluid particles decreases with the increases 
of the chemical reaction R and is maximum where the 
reaction rate is equal to zero. If the system is non-
rotating i.e., the corriolis force is absence the energy 
decay of the fluid particles more rapidly than any 
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Fig. 1: Energy decay curves of Eq. (40) for 75.2)2exp( =Ω= mmkiF ε  

 

 
 
Fig. 2: Energy decay curves of Eq. (40) for 5.1)2exp( =Ω= mmkiF ε  

 

 

 

Fig. 3: Energy decay curves of Eq. (40) for 75.0)2exp( =Ω= mmkiF ε  

 

rotating system which indicated in the figures below 

that is increasing of Coriolis force causes the energy 

decay of fluid particles and vice versa. 

In Fig. 4, we notice that in the absence of Coriolis 

force the energy decay of fluid particles are maximums 

due to the variation of first-order chemical reaction in 
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Fig. 4: Energy decay curves of Eq. (41) i.e., Eq. (40) for 0)2exp( =Ω= mmkiF ε  

 
homogeneous fluid turbulence for the case of multi-
point and multi-time which mention above graphically.  
 

CONCLUSION 
 

This study shows that if the concentration selected 
is the chemical reactant of the first order, then the effect 
is that the decomposition of the concentration 
fluctuation in homogeneous turbulence in the presence 
of Coriolis force the energy decay of the fluid particles 
is much more slowly if the system is non-rotating i.e., 
in the absence of Coriolis force. The faster rate of 
decomposition is governed by exp (-2RTm). The 
decomposition of the concentration fluctuation in 
homogeneous turbulence in the rotating system for the 
case of multi-point and multi-time is more slowly due 
to absence of Coriolis force in the first order chemical 
reaction. In a normal way, it takes a lot of time to get 
rid of a pollutant in the fluid. The only effective factor 
in the case of chemical reactant is exp (-2RTm) and 
Coriolis force which can be taken as the correcting law 
for the pure mixing case and may be applied to the data 
for the case of reactant and thus, the numerical work 
required for this study has been avoided. From the 
above figures and discussion, we conclude that in the 
rotating and non-rotating frame the decomposition of 
the concentration fluctuation in homogeneous 
turbulence for the case of multi-point and multi-time 
are increases due to the decreases of the first order 
chemical reaction and maximum at the point where the 
chemical reaction is zero and more rapidly in the 
absence of coriolis force.  
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