
Research Journal of Applied Sciences, Engineering and Technology 6(9): 1669-1673, 2013
DOI:10.19026/rjaset.6.3888
ISSN: 2040-7459; e-ISSN: 2040-7467
© 2013 Maxwell Scientific Publication Corp.

Submitted: January 19, 2013 Accepted: March 02, 2013 Published: July 15, 2013

Corresponding Author: Wei Dai, School of Economics and Management, Hubei Polytechnic University, Huangshi 435003,
China

This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

1669

Research Article
Design and Realization of user Behaviors Recommendation System Based on Association

rules under Cloud Environment

1
Wei Dai and

2
Peng Hu

1
School of Economics and Management,

2
School of Mathematics and Physics, Hubei Polytechnic University, Huangshi 435003, China

Abstract: This study introduces the basal principles of association rules, properties and advantages of Map Reduce
model and Hbase in Hadoop ecosystem. And giving design steps of the user's actions recommend system in detail,
many time experiences proves that the exploration combined association rules theory with cloud computing is
successful and effective.

Keywords: Association rule, cloud computing, mapreduce, hbase

INTRODUCTION

Association rules (Zheng et al., 2001), are classical

and effective data mining method, it is used in many
circumstances, such as market basket analysis, library
transactions records. But association rule method meet
velocity performance bottleneck in face of mass data
sets. Through reforming association rule method with
Map Reduce, we can rapidly gain association rules
results by introducing cloud computing compute
capacity. This project is supported by imbursement of
science and technology dissertations online of China
(EB/OL) for increasing the users’ loyalty; we dispose a
mass of user's actions historical records and giving
design steps of the user's actions recommend system in
detail, many time experiences proves that the
exploration combined association rules theory with

cloud computing is successful and effective，which

have valuable recommend information to improving
user experience.

COMPUTATIONAL METHODS

Association analysis: I = {��, ��, …, ��} is all item sets
in data analysis, T = {��, ��, …, ��} is all transactions
sets. Set which involves 0 or many items are named as
itemset. A itemset which involves k items is called k-
itemset. Transaction width means item number of a
Transaction.

Definition 1: Support count: transaction number which
certain itemset in all transaction sets. In mathematic,
itemset X’s support count σ(X) is expressed:

() |{ | , }|i i iX t X t t Tσ = ⊆ ∈

Symbol |. | express element number of set.

Definition 2: Association rule: is contained express like
X→Y, and X⋂Y= Ø. The strength of association rule
can be measured by support and confidence. Support
shows frequent degree to certain data set and
confidence shows Y’s frequent degree in transactions
which contains X. Support(s) and confidence(c) can be
defined formalized as following (Cheung et al., 1996):

()

()
X Y

s X Y
N

σ ∪
→ = (1)

()

()
()

X Y
c X Y

X

σ

σ

∪
→ =

 (2)

Association rule mining task can be decomposed

into 2 steps:

Step 1: Generating frequent item set: The object is
to find out all itemset that satisfy minimal
support threshold.

Apriori principle all its sub sets are also

frequent while a itemset is frequent.
At the beginning, every item is regarded as

candidate 1-itemset. Some item are cut after pruning
based on support count. The other become formal 2-
itemset. And then formal 2-itemset are used to generate
candidate 2-itemset by special function.

Apriori (D, minsup) {K=1
Repeat

K = k+1

� = apriori-gen(���) //generate candidate itemset

Res. J. Appl. Sci. Eng. Technol., 6(9): 1669-1673, 2013

1670

for every t∈T do

� = subset(
�,�) //distinguish all candidate itemset

of t
For every candidate itemset c∈
� do
 σ(c) = σ(c) +1 //support increase
End for

End for
�� = {c|� ∈
� ∧ �(�)� ≥ N×minsup} //refine frequent
k-itemset
Until �� = Ø
Result = ∪ ��
}
Apriori algorithm (Han and Kambr, 2001)
Proceduce apriori_gen (���: frequent (k-1)-itemsets;
minsup: min support threshold)
 For each itemset �� ∈ ���

 For each itemset �� ∈ ���
If((��[1] = ��[1]) ∧ … ∧(���� − 1! = ���� − 1!))
Then

{c = �� ∪ ��;
If has_infrequent_subset (c, ���)
Then delete c;
else add c to
�;

}
Return
�;
Proceduce has_infrequent_subset (c:candidate k-
itemset; ���: frequent (k-1)- itemset)

for each (k-1) –subset s of c
If (!(s∈ ���))

Then return TRUE;
Else return FALSE;

Step 2: Generating rules: The object is to extract all

rules with high confidence from all frequent
itemsets.

Association rules can be extracted like this: Itemset

Y is divided into non-empty two sub sets X and Y-X,
simultaneously X→Y-X must satisfy with confidence
threshold. Rule’s confidence can be calculated by
formula σ({X∪{Y-X}})/σ({X}).

We can generate 2�-2 association rules from every
frequent k-itemset because rules which like Ø→Y or
Y→Ø is ignored.

Theorem 1: If rule X→Y-X can not satisfy with

confidence threshold, rules like $ ′→Y-$ ′must can not

satisfy with confidence threshold, that $ ′ is sub set of

X.

For every frequent k-itemset %�, k ≥ 2 do

&� {i|� ∈�%�}//rule’s 1-itemset consequent
Call ap-genrules (%�, &�)

End for
Proceduce ap-genrules (%�, &')

K = |%�|//frequent itemset size

m = |&'|// rule consequent size
If k>m+1 then

&'(� = apriori – gen(&')
For every ℎ'(� ∈ &'(�do

Conf = σ(%�) / σ(%�- ℎ'(�)
If conf≥ min conf

then

Output: rule (%�- ℎ'(�)→ ℎ'(�
Else

Delete ℎ'(� from &'(�
End if

End for
Call for
Call ap-genrules (%�, &'(�)

End if

Mapreduce model: MapReduce (Dean and Ghemawat,
2004) which it is invented by google company is a
simplified distributed model, it is often used in parallel
computing of mass data set. Its stick programming
model makes program simple under cloud environment.
MapReduce decomposes the problem that needs to be
processed into two steps-map stage and reduce stage.
Data sets are divided into unrelated blocks, which are
respectively deposed by every compute in whole
distributed cluster and then reduce stage output ultimate
result by collecting all mid results. MapReduce
framework uses master-slaves architecture. Master runs
a JobTracker, which manages work sub tasks allocation
of a job and monitors their run circumstances; master
will demand to rerun them when many tasks fail, while
every slave runs a Task Tracker, which carries out
computing task to small data block of data sets.
Computing task allocation observes the rules that data
block location. It adequately embody ‘moving
computing is easier than moving data’ in distributed
system design. Figure 1 shows detail dispose process of
MapReduce model.

Hbase architecture: Hbase (http://hbase.apache.org/)
follows a construction of master-slave server, every
Hbase cluster always involve a master server and
multiple regionservers. Every region comprises of
successive record rows in a table, from start key to
end key. And then all rows of a table are saved in a
series of regions. Different regions are made a
distinction by table name and start key or end key.
Every table can be divided into multiple sub tables,
which are managed by regionserver and master
assign them to regionserver. Hbase contains the
following conceptions. Rowkey, the only identifier
of a row, can be any character string; it is saved as
byte array. When storage, data record sorted by byte
order of rowkeys. Column Family, is a basal unit of
access control, disk and memory’ use count, is a
table scheme design. Qualifier, further partition
under Column Family, qualifier name is used with
Column Family prefix. Cell, fixed a crossed storage

Res. J. Appl. Sci. Eng. Technol., 6(9): 1669-1673, 2013

1671

Fig. 1: MapReduce model depose procedure

Fig. 2: Hbase architecture

unit with row and column Qualifier, every cell

stores different vision of data, which distinguish by

timestamp in Fig. 2 (http://hbase.apache.org/).

Column-Oriented property and Hbase’s

advantages: Column-oriented databases save their

data grouped by columns. Subsequent column

values are stored contiguously on disk. This differs

from the usual row-oriented approach of traditional

databases, The reason to store values on a per

column basis instead is based on the assumption

that for specific queries not all of them are needed.

Especially in analytical databases this is often the

case and therefore they are good candidates for this

different storage schema. Reduced IO is one of the

primary reasons for this new layout but it offers

additional advantages playing into the same

category: since the values of one column are often

very similar in nature or even vary only slightly

between logical rows they are often much better

suited for compression than the heterogeneous

values of a row-oriented record structure: most

compression algorithms only look at a finite

window. Specialized algorithms, for example delta

and/or prefix compression, selected based on the

type of the column (i.e., on the data stored) can

Res. J. Appl. Sci. Eng. Technol., 6(9): 1669-1673, 2013

1672

yield huge improvements in compression ratios.
Better ratios result in more efficient bandwidth
usage in return.

Hbase is a sub-project of Hadoop (http://hadoop.
apache.org/), is a data manage software built in
HDFS (http://hadoop.apache.org/hdfs/) (Chen et al.,
2011) distributed file system. HBase stores data on
disk in a column-oriented format, but it is not a
Column-oriented database through and through. It is
distinctly different from traditional columnar
databases: whereas columnar database excel at
providing real-time analytical access to data, HBase
excels at providing key-based access to a specific
cell of data, or a sequential range of cells.

RESULTS AND DISCUSSION

Hbase data tables structure of this system: We full
use the advantages of Hbase, design the following
Hbase tables to find out association rules.
ArticlesDetail table stores every article’s detail
information. ArticleID is its rowkey, string ‘f’ is
Column Family, ‘ArticleID_Author1, Author2,
Author3_Author1Dep, Author2Dep, Author3Dep’ is
Qualifier, null is corresponding value.
OriginalTransactions table stores every transaction’s
detail information. TransactionID is its rowkey, string
‘f’ is Column Family, ‘ArticleID1, ArticleID2,
ArticleID3’ which ArticleIDs in every download is
Qualifier, null is corresponding value in Table 1.

We orderly generate all download articles’ sub sets

of every row record according to lattice structure (Zhao

Table 1: Hbase original transactions

Rowkey1 = t1 f

ArticleDI.ArticleD2.ArticleD3..

Null

Rowkey2 = t2 f

ArticleDI.ArticleD2.ArticleD3..

Null

Table 2: Hbase transactions support

Rowkey1 = sub set

ilem 1

f

t1_t2_t3_..

3

Rowkey2 = sub set

ilem2

f

t1_t2_t3_t7..

4

et al., 2000), simultaneity insert every sub set item into

transactionsSupport table witharchitecture that sub set

item is its rowkey, string ‘f’ is Column Family,

TransactionIDs like ‘t1_t2_t3_...’ is Qualifier,

TransactionID number is corresponding value. If

certain item appear in a new transaction, Qualifier will

be appended by ‘_new TransactionID’ and

value(TransactionID number) should be increase by

Table 2.

Lattice structure is used to orderly enumerate all

potential itemset. Figure 3 shows the lattice structure of

I = {a, b, c, d}.

Every item that generate by apriori algorithm will

be inserted into frequentItems table with architecture

that sub set item is its rowkey, string ‘f’ is Column

Family, Item’s support is Qualifier, null is

corresponding value in Table 3.

Fig. 3: Lattice structure

Res. J. Appl. Sci. Eng. Technol., 6(9): 1669-1673, 2013

1673

Table 3: Hbase frequentItems

Table 4: Computing time contrast

Record number UnMap reduce time (ms) Map reduce time (ms)

500 3367 355

1000 5904 612
1500 11140 887

2000 15658 1249

Parallel dispose frequentItems table’s items with

MapReduce mode: After generating frequentItems

according to apriori algorithm, all frequent Items are

stored in frequentItems table; we can parallel generate

association rules with adequate confidence by

MapReduce program. Because every k-Item can

generate many association rules, MapReduce mode

can improve dispose process by full using compute

cluster. Table 4 describes the contrast of two ways in

5000 records.

CONCLUSION

The study describes user behaviors

recommendation system design approach based on

association rules and cloud computing in detail, make

full use of the computing ability of cloud computing,

design Hbase tables smartly, improve the computing

course and can generate association rules rapidly. The

system improves user experience to some extent,

improves recommend response time largely, it is proved

to be a successful exploration. Base on the established

system, providing more and complicated models will be

the future work.

AKNOWLEDGMENT

The research has been financially supported by

School-level innovative talents project (Grant

No.12xjz20C).

REFERENCES

Chen, Z., Y. Xu, X.J. Wang and Y.L. Jin, 2011. A new

fault tolerance system for cloud storage. J.

Convergence Inf. Technol., 6(4): 34-41.

Cheung, D.W., J.W. Han, V.T. Ng, A.W. Fu and Y.J.

Fu, 1996. A fast distributed algorithm for mining

association rules. IEEE 4th International

Conference on Parallel and Distributed Information

Systems, Miami Beach, Florida.

Dean, J. and S. Ghemawat, 2004. Map reduce:

Simplified data processing on large clusters [C].

Proceedings of OSDI ’04: 6th Symposium on

Operating System Design and Implementation, San

Francisco, CA, pp: 137-150. Science and

Technology Dissertations Online of China

[EB/OL]. Retrieved from: http://www. paper.

edu.cn/.

Han, J. and M. Kambr, 2001. Data Mining: Concepts

and Techniques [M]. Higher Education Press,

Beijing.

Zhao, Y., J.L. Shi and P.F. Shi, 2000. A limited lattice

structure for incremental association mining.

Springer: PRICAI 2000 Topics in Artificial

Intelligence, pp: 102-103.

Zheng, Z., R. Kohavi and L. Mason, 2001. Real world

performance of association rule algorithms.

Proceeding of 2001 ACM-SIGKDD International

Conference on Knowledge Discovery and Data

Mining, New York, ACM, pp: 401-406.

Rowkey1 = sub set
ilem 1

f
Item1’s support

null

Rowkey2 = sub set
ilem2

f
Item2’s support

null

