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Abstract: In order to solve the problem that the basis matrix is usually not very sparse in Non-Negative Matrix 
Factorization (NMF), a method, called Linear Projective Non-Negative Matrix Factorization (LP-NMF), is 
proposed. In LP-NMF, from projection and linear transformation angle, an objective function of Frobenius norm is 
defined. The Taylor series expansion is used. An iterative algorithm for basis matrix and linear transformation 
matrix is derived and a proof of algorithm convergence is provided. Experimental results show that the algorithm is 
convergent; relative to Non-negative Matrix Factorization (NMF), the orthogonality and the sparseness of the basis 
matrix are better; in face recognition, there is higher recognition accuracy. The method for LP-NMF is effective. 
 
Keywords: Face recognition, linear transformation, non-negative matrix factorization, projective 

 
INTRODUCTION 

 
Projective Non-negative Matrix Factorization (P-

NMF) XWWX
T≈  (Yuan and Oja, 2005) was 

proposed based on NMF (Lee and Seung, 1999). Since 
it was constructed from the projection angle, the basis 
matrix W was only computed in the algorithm for P-
NMF. The computational complexity was lower for one 
iteration step for P-NMF, as only one matrix had to be 
computed instead of two for NMF.  

Linear Projection-Based Non-negative Matrix 

Factorization (LPBNMF) WQXX ≈  (Li and Zhang, 

2010a) was constructed from projection and linear 

transformation angle. In LPBNMF, a monotonic 

convergence algorithm was given and the orthogonality 

and the sparseness of the basis matrix were computed 

quantificationally. 

On the basis of optimization rules for P-NMF and 

LPBNMF, the basis matrixes were all forced to tend to 

be orthogonal. So, relative to NMF, the orthogonality 

and the sparseness of the basis matrixes were better and 

then the methods for P-NMF and LPBNMF were more 

beneficial to the applications of data dimension 

reduction, pattern recognition, and so on. However, 

since the algorithm for P-NMF wasn’t convergent, the 

method for LPBNMF was more beneficial to the 

application (Li and Zhang, 2010a). 
In this study, another method is proposed based on 

LPBNMF WQXX ≈ . We call it Linear Projective 

Non-negative Matrix Factorization (LP-NMF). Relative 

to the algorithm in the study (Li and Zhang, 2010a), the 
iterative formulae of this algorithm are simpler. 

 
LINEAR PROJECTIVE NON-NEGATIVE 
MATRIX FACTORIZATION (LP-NMF) 

 
Taking Frobenius norm as similarity measure, we 

consider an objective function: 
 

2

2

1
F

WQXXF −=                                        (1) 

 
where, .0,0,0 ≥≥≥ QWX   

The mathematical model in NMF definition 

WHX ≈  is based on nonlinear projection. But, the 

basic idea for LP-NMF is that: firstly, we turn the data 

X into QW by a suitable linear transformation Q. 

Secondly, we may consider that QW is the projection of 
the sample space X  onto a suitable subspace W. 
Finally, we minimize the objective function F in Eq. (1) 
to get W and Q. Here, we respectively call W basis 
matrix and Q linear transformation matrix. 
 
The update rule for basis matrix W: For any element 

abw  of  W, let 
abwF  stand for the part of F relevant to 

wab in Eq. (1). So, writing w  instead of wab in the 

expression of 
abwF , we may get a function ).(wF

abw
 

Obviously, the first order derivative of  )(wF
abw

 at wab is 

the first order partial derivative of  F with respect to wab. 
That is: 
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Similarly, the second order derivative of )(wF
abw

 at 

abw  is: 
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and other order derivatives of )(wF
abw

with respect to 

w  are: 

 

0)()( =wF n

wab
                                            (4) 

 

where, .3≥n  

Thus, the Taylor series expansion of )(wF
abw

 at abw  is: 
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Meantime, to emphasize time of abw  in numerical 

calculation, we write 
)(t

abw  instead of abw  in the 

brackets of )(wF
abw

. So, equation: 
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is gotten from Eq. (5). 

Now, we define a function: 
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Theorem 1: ),( )(t

abw wwG
ab

 is an auxiliary function for 

)(wF
abw

. 

 

Proof: )(),( )( wFwwG
abab w
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abw =  is obvious when 

ww t
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Thus, ),( )(t

abw wwG
ab

 is an auxiliary function for )(wF
abw

 

according to the definition 1 of reference (Lee and 

Seung, 2001). 

 

Theorem 2: )(wF
abw

 is nonincreasing under the update: 
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)(wF
abw  is nonincreasing. 

    Using the definition of auxiliary function and 

Theorem 2, we can get the local minimum of )(wF
abw  

if only the local minimum of ),( )(t

abw wwG
ab

 is gotten. 

To get a local minimum of )(wF
abw , we may calculate 

the first order partial derivative of ),( )(t

abw wwG
ab

 with 

respect to w , and have: 
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  So, the update rule of abw  is: 
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Using this update rule, we may make the auxiliary 

function ),( )(t

abw wwG
ab

 local minimum, and thus make 

the objective function )(wF
abw

 local minimum. If all 

elements of W are updated by Eq. (8), the local 

minimum of the objective function F may be gotten. 

The algorithm converges after finite iterations. The Eq. 

(8) is the update rule for the basis matrix W. 

 

The update rule for linear transformation matrix Q: 

Similarly, we can get a function )(qF
abq

. All derivatives 

of )(qF
abq

 are: 
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Meantime, when numerical calculation is 

considered, Eq. (9) is expressed through equation: 
 

+−+= ))(()()( )()(')( t

ab

t

abq

t

abqq qqqFqFqF
ababab

 

2)( )()()(
2

1 t

abbb

T

aa

T qqXXWW −                    (10) 

 
We define a function: 
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If all elements of Q are updated by Eq. (12), the 

local minimum of the objective function 
gotten. 

The Eq. (12) is the update rule for 
transformation matrix Q. 
 
Algorithm steps: Using Eq. (8) and Eq. (12), we may 
get an algorithm to compute the basis matrix 
linear transformation matrix Q. As follows:
 
Step1: Initialize W, Q and X with non-
Step2: Update W by Eq. (8) 
Step3: Update Q  by Eq. (12) 
Step4: Repeat step2 and Step3 

converges 

EXPERIMENTS AND ANALYSIS

In order to verify the convergence of the algorithm 
and the sparseness of the basis matrix
experiment. In the experiment, X consists of the first 
five images of each person in the ORL facial image 
database, a total of 200 data. We randomly initialize 
and Q with non-negative data, and set the rank of the 
basis matrix W 80. In order to reduce the amount of 
computation and speed up operating speed, every image 
is reduced to half. 

Algorithm convergence: In the experiment
curve of the objective function values
steps is shown in Fig. 1. We can see that
convergent, but the convergence speed
the reason is that the algorithm is still an a
optimization method. 
 
Analysis of the basis matrix: Meantime, 
matrix image is shown in Fig. 2. We respectively 
the  vector  W

T
x,   (WTW)

-1
W

T
x  and Qx
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are updated by Eq. (12), the 
local minimum of the objective function F may be 

The Eq. (12) is the update rule for the linear 

Using Eq. (8) and Eq. (12), we may 
get an algorithm to compute the basis matrix W and the 

As follows: 

-negative data 

 until algorithm 

ANALYSIS 

verify the convergence of the algorithm 
and the sparseness of the basis matrix W, we do an 

consists of the first 
ORL facial image 

database, a total of 200 data. We randomly initialize W 
set the rank of the 

80. In order to reduce the amount of 
computation and speed up operating speed, every image 

experiment, the varied 
s versus iteration 

that the algorithm is 
the convergence speed is lower which 

that the algorithm is still an alternating 

Meantime, the basis 
. We respectively take 

Qx as the  feature 

Fig. 1: Objective function values versus iteration steps when 

the basis matrix is initialized randomly with non

negative data 

 

 
Fig. 2: Basis matrix image 

 

        
 

                               (a)                                

 

        
 

                (c)                             (d)
 

Fig. 3: (a) Original image x ; (b)

xWWWW TT 1)( − ; (d) )(QxW  

 

  vector  of  the  data x   and  reconstruct 

reconstructed results are respectively shown in 

image, the (c) image and the (d) image in 

From the basis matrix image, 

basis matrix is very sparse. This shows that the basis 

matrix W is forced to tend to 

optimizing the objective function F.

From the reconstructed images, 

three reconstructed images are all effective, and this 

shows that the basis matrix W is effective; 

reconstructed image of x is better by 

)(QxW  than by )( xWW T , and this shows that the basis 

 
versus iteration steps when 

the basis matrix is initialized randomly with non-

 

   

               (b)                     

 

(d) 

; (b) )( xWW T ; (c) 

reconstruct x , and 

reconstructed results are respectively shown in the (b) 

the (d) image in Fig. 3. 

From the basis matrix image, we can see that the 

basis matrix is very sparse. This shows that the basis 

 be orthogonal by 

. 

From the reconstructed images, we can see that 

reconstructed images are all effective, and this 

is effective; getting the 

is better by xWWWW TT 1)( − or 

, and this shows that the basis 
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Table 1: Comparison of recognition accuracy for LP-NMF (%) 

The rank  of W/ Template  library 20 40 60 80 100 120 140 160 

(WTW)-1 WTX
 

86.5 89.5 89.5 91.5 90 89.5 54 25 
QX 84.5 88 89 88.5 89.5 87.5 90.5 90 

 

matrix W is still approximately orthogonal; however, 

xWWWW TT 1)( −  image almost is the same as )(QxW  

image, so it is question that how to select the feature 

vector of data x  from xWWW TT 1)( −  and Qx. It will be 

answered in next section.  

In addition, the orthogonality and the sparseness of 

the basis matrix may be computed quantificationally (Li 

and Zhang, 2010a; Yang et al., 2007). Without doubt, 

because this method is still based on the objective 

function in Eq. (1) for optimization, the orthogonality 

and the sparseness of the basis matrix are still better. 

Here, we don’t repeat them. 

 

RESULTS OF FACE RECOGNITION AND 

ANALYSIS 

 

In learning phase, X consists of the first five 

images of each person in the ORL facial image 

database, a total of 200 data. In order to reduce the 

amount of computation, and speed up the operating 

speed, each image is reduced to a quarter of the 

original. We initialize randomly W and Q with non-

negative data. After the algorithm converges, we get the 

basis matrix W, matrix Q, XWWW TT 1)( − , and QX .  

In the pattern recognition test phase, we take the 

after five images of each person in the ORL facial 

image database, a total of 200 data, as test data, and 

reduce every image to a quarter of the original. 

We first decide the feature vector of data x  from  

xWWW TT 1)( −  and Qx  in LP-NMF by experiments. In 

these experiments, we respectively take 

XWWW TT 1)( −  and QX  as template library, and use 

the nearest neighbor rule for face recognition. When the 

ranks of the basis matrix W are set different values, the 

results of the face recognition are shown in Table 1. 

From the Table 1, the template library XWWW TT 1)( −  

used, the recognition accuracy is very low when the 

rank of the basis matrix is greater than or equal to 140. 

On the contrary, the recognition accuracy is higher 

when the template library QX  is used. But, when the 

rank of the basis matrix is smaller than 140, the 

recognition accuracy is slightly higher using 

XWWW TT 1)( −  than using QX . Therefore, the linear 

transformation matrix Q has some important 

information. 

So, in next experiments, we take the matrix QX
 
as 

a template library, and use Qx  to compute the feature 

vector of test image x  by the matrix Q  obtained in the 

learning phase, and  use the  nearest  neighbor  rule for  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4: Comparison of the results of face recognition in the 

ORL 

 

face recognition. We compare this method with the 

methods of NMF, LNMF (Li et al., 2001), NMFOS (Li 

et al., 2010b), ONMF (Yoo and Choi, 2010), and 

DNMF (Buciu and Nafornita, 2009). When the ranks 

(i.e., the feature subspace dimensions) of the basis 

matrix are set different values, the results of the face 

recognition are shown in Fig. 4. 

As can be seen from the Fig. 4, the recognition 

accuracy is obviously higher using LP-NMF than using 

NMF or ONMF. The cause is that the basis matrix W is 

forced to tend to be orthogonal by the objective 

function for LP-NMF in Eq. (1) so that the basis matrix 

is more orthogonal in LP-NMF than in NMF. So the 

discriminative power of the feature vector Qx  for LP-

NMF is better. Meantime, when the rank of the basis 

matrix is greater than or equal to 60, the recognition 

accuracy is slightly higher using LP-NMF than using 

LNMF or NMFOS. This is because there are also 

approximately orthogonal constraints for the basis 

matrixes in the objective functions for LNMF and 

NMFOS so that the discriminative power of the feature 

vectors is also good. But the discriminative power of 

the feature vector Qx  for LP-NMF is better. Finally, 

since the class information is taken into account in 

DNMF, there is also higher recognition accuracy. 

In addition, when the rank of the basis matrix of 

LP-NMF is between 40 and 160, the recognition 

accuracy becomes more stable. This is because the 

orthogonality and the sparseness of the basis matrix for 

the LP-NMF are always better so that the recognition 

accuracy is less affected by the number of the rank of 

basis matrix. 
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CONCLUSION 

 

In this study, we propose a method, called Linear 

Projective Non-negative Matrix Factorization (LP-

NMF). In LP-NMF, the algorithm steps are given. 

Relative to LPBNMF, the iterative formulae are simpler. 

Relative to NMF, the orthogonality and the sparseness 

of the basis matrix are better. Relative to NMF and some 

extended NMF, there is higher recognition accuracy in 

face recognition. 
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