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Abstract: In this study, we focused mainly on establishing a new sensitive method to identify location of damages 
in Service Bridge. The improved method of combination of Autoregressive models (AR) and autoregressive models 
with exogenous inputs (ARX) was applied to identify the damage in Service Bridge. Firstly, an improved AR-ARX 
model was established for damage identification of bridge on service. Secondly, the detailed steps of identifying 

location of damages are explained using proposed damage diagnosis method. Finally，the improved AR-ARX 

model was used to identify location of damage in a two-span steel beam. The results of calculated showed the 
damage diagnosis method based on improved AR-ARX model that considered the ambient excitation is much more 
powerful and accurate than AR-ARX method. So the proposed method can apply to bridge damage detection with 
few acceleration sensors. This study laid the foundation for the bridge identification. 
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INTRODUCTION 

 
In the search for more sensitive damage features 

that can capture more information from the measured 
vibration time history responses of structures, 
researchers have proposed using different types of time 
series models. Time series models rely on the fact that 
the value of the measured response of the structure at 
any time can be predicted based on a linear 
combination of its values at a previous time and some 
random errors. The analogy behind using time series 
models for vibration-based damage identification of 
structures lies in the fact that if a time series model is 
fitted to the vibration responses of the bridge, the 
obtained coefficients and properties of the model can 
capture the dynamic characteristics of the structure. 
Then, any deviation from the obtained model can be a 
sign of change or damage in the structure; however, 
different researchers have extracted different types of 
damage features based on time series models in order to 
capture the deviations in the time series models. 

Sohn et al. (2001a, b) used a combination of AR-
ARX models to extract damage features for damage 
detection in a patrol boat. Sohn et al. (2001a, b) used a 
similar approach to identify damages in an 8 DOF 
mass-spring system. Fasel et al. (2002) used a 
combination of Autoregressive models (AR) and 
Autoregressive models with exogenous inputs (ARX) in 
order to extract damage features. Sohn et al. (2005) 
showed the robustness of EVS  in  detecting a nonlinear  

damage introduced into a linear system through a study 
for damage detection in an 8 DOF spring-mass 
structural system. Omenzetter and Brownjohn (2006) 
used both vector and univariate seasonal Autoregressive 
Integrate Moving Average (ARIMA) model for damage 
identifications in a bridge. Overbey et al. (2007) used a 
state-space-based prediction error technique for damage 
detection in an aluminum frame with bolted joints. 
Haroon and Adams (2007) used ARX models to 
identify damage in mechanical systems by capturing the 
nonlinear nature of the damages. A very similar 
approach has been used by Zhang (2007) to identify the 
location of damage in a numerically simulated three 
span beam. The beam was defined as a combination of 
frame elements and zero-length elements to connect 
frame elements together and the damages were 
introduced by reducing the stiffness at the zero length 
node elements. Carden and Brownjohn (2007) used 
Autoregressive Moving Average (ARMA) models for 
structural health monitoring of several different 
structures. Gul and Catbas (2009) used the deviations in 
the coefficients of AR models for damage identification 
on two different laboratory scale structures. Next they 
used Mahalanobis distances to statistically measure the 
deviation of the damage features from the undamaged 
condition of the structure.  

There is considerable amount of research 

conducted to identify locations of damage based on 

vibration-base techniques. Almost all the reviewed 
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vibration-based techniques use either simple modal 

characteristics such as modal frequencies or modal 

shapes, some modally related indices such as flexibility 

matrix or some sort of model parameter updating. All 

these methods go through a process of data 

condensation. This means that the measured vibration 

data on the structure is used to derive a condensed set 

of information like natural frequencies, mode shapes or 

mode shape curvatures; however, a useful portion of the 

data could be lost during the data condensation process. 

The other problem of these methods is that usually a 

limited number of vibration modes are used in the 

reviewed methods in order to identify damages in the 

structures. 

In the search for more sensitive damage features 

that can capture more information from the measured 

vibration time history responses of structures, 

researchers have proposed using time series models. 

This research focuses mainly on developing a new 

damage feature to identify location of damages. The 

research starts with modifying a damage diagnosis 

method which was previously developed in the 

literature based on combination of AR-ARX time series 

models for identifying existence of damage and uses it 

to identify location of damage in a two-span steel beam. 

 

IMPROVED AR-ARX MODELS 

 

Autoregressive (AR) and Autoregressive Moving 

Average (ARMA) models: AR models are actually 

regression models that can predict the present 

observations in the structural response as sum of two 

uncorrelated parts, one is dependent on the previous 

observations in the structural response and the other one 

can be a series of uncorrelated sequences. The simplest 

such models are: 

 

ttt eXX += −1ϕ                    (1) 

 

where, 

Xt =  Observation in the structural response at 

time t 

ϕ  =  Model constant 

et  =  A sequence of uncorrelated variables or the 

prediction error of the model 

 

The other simple time series model is when an 

observation can be related as sum of a series of 

uncorrelated sequences. The simplest such model can 

be represented as: 

 

ttt eeX += −1θ                      (2) 

 

where,  

θ =  Model constant 

This model is called Moving Average (MA) model. 

In order to model responses of a complex dynamical 

system, higher order Autoregressive moving average, 

ARMA (p, q), models can be used: 
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where, 

Xt =  Observation in the structural response at 

time t 

φi = ith predictor coefficients for the 

Autoregressive part of the model 

θj =  jth predictor coefficients for the Moving 

Average part of the model 

et  = Residual error of the model prediction at 

time t 

P,q  =  Orders of Autoregressive and Moving 

average terms of the model, respectively 

 

AR and MA model can be used to represent the 

same dynamical model interchangeably. Xt Can be a 

stationary response of the structure only if φ1<1. 

Therefore, if the process has started at infinite past, the 

above equation can be written as: 
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If the number of modes excited in the dynamic 

response of the structure is n/2, then φ1 can be written 

in term of natural frequencies of the structure: 
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where, 

iλ  =  
thi  pole of the system 

 

Each pair of poles is related to the natural 

frequency, ωj and damping ratio, ζj, of a mode through 

the following equation, where ji 2= : 
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where, 

λi-1 =  Complex conjugate of λi 

∆  =  The sampling time interval 

 

Therefore, if only modal properties of the structure 
are required, the vibration response can be modeled by 
just the AR part of the model. As a result, using AR 
models instead of ARMA models has the advantage of 
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less trial and error in estimating the model parameters. 
Another advantage of using AR models rather than 
ARMA models is the fact that a linear least-square 
method can be used for estimating AR parameters while 
a nonlinear least-square technique is required for 
estimating parameters of an ARMA model. 

The method that can be used to identify the proper 
orders for the times series models are the 
autocorrelation and partial autocorrelation functions. 
Autocorrelation function can be defined as: 
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where, 

)(hγ  
= Auto covariance function of an 

observation with itself in a time shift 
h  

),( htt XXCov +  
= Covariance of an observation with 

itself in a time shift h 

)( tXVar  
= Variance of the observation 

 

Partial autocorrelation function, )(hΦ , is also 

defined as: 
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where,   

tX̂ = The best linear unbiased predictor of 
tX . 

 
Autoregressive with exogenous (ARX) inputs 
models: Autoregressive with exogenous (ARX) model 
can be represented as the following: 
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where, 

αi =  Predictor coefficients for the AR part of the 

model at time lag i 

βj =  Predictor coefficients for the exogenous part 

of the model at time lag j 

εt =  Residual error of the model prediction at 

time t 
et-j =  External input to the model at time t-j; α,b 

Orders of Autoregressive and exogenous 
terms of the model, respectively 

 
It can be shown that the ARX model is a linear 

approximation of an ARMA model for a stationary time 
series. So it is suggested that orders of the AR part and 
exogenous part in the ARX model are chosen so that: 

 

pba ≤+                   (10) 

 
 
Fig. 1: Steps of damage diagnosis approach 

 

where, 

a =  Order of the AR part of the ARX model 

b =  Order of the exogenous part of the ARX 

model 

p =  Order of the AR model in Eq. (3) 

 

Estimating parameters of an ARX model can be 

treated as a linear regression problem using least-square 

techniques. A model will be regressed on the 

observation values at previous times and some external 

inputs, which can be taken from the error term in the 

AR model, to predict the value of the observation at a 

present time. 

 

DAMAGE DIAGNOSIS METHOD 
 

These damage diagnosis approaches based on AR-

ARX models are proposed in four steps are shown in 

Fig. 1:  

 

• Data sample formation 

• Data normalization 

• Damage feature extraction 

• Statistical evaluation  

 

During these four steps, the vibration responses of 

the structure obtained at its healthy and damage 

conditions will be indirectly compared to each other by 

extracting sensitive damage features. The damage 

features will be obtained by application of AR and 

ARX models to the measured vibration response of the 

structure and probability values will be used to 

statistically measure the amount of variations in the 

extracted damage features from healthy to the damage 

condition of the structure. 
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IMPLEMENTING THE DAMAGE  

DIAGNOSIS METHODS 
 

One 330 s acceleration time histories measured at 

different damage conditions of the beam were used to 

evaluate the ability of the proposed damage diagnosis 

method to identify damage locations on the beam. The 

geometry of the beam is shown as Fig. 2. The vibration 

responses measured at different damage conditions of 

the beam were indirectly compared to the vibration 

responses measured at its healthy condition. All the 

vibration responses used for this comparison were 

measured under the same random loading excitations. 

The vibration responses of the beam were used to 

extract damage features and to evaluate the probability 

of occurring damage at different sensor locations along 

the length of the beam. 

Generation of these smaller data samples in the 

Reference, Healthy and Damage data sets are shown in 

Fig. 3 and 4. One of the reasons for segmenting the 

vibration response of the beam to smaller data samples 

was to form data samples which represent the response 

of the beam under varying loading conditions. A better 

match can be found for the data samples in the Healthy 

and Damaged data sets in the pool of Reference data 

samples that represent similar operational conditions of 

the beam. 

The average correlation values calculated for 

between the AR model coefficients of the Healthy and 

Damage data samples and the AR model coefficients of 

the matched  Reference  data samples are presented in 

Table 1. The matched data samples in different data sets 

can potentially represent the responses of the beam that 

are obtained under similar loading conditions. 

The average values of these calculated damage 

features are presented in Table 2 for different sensor 

locations at different conditions of the beam. As can be 

seen, the average damage features for different sensors 

in the healthy condition beam are closer to 1, as 

expected. As the damage grows, the average damage 

features grow. The larger the damage features are, the 

greater the likelihood is that damage is located at that 

sensor location. 

Probability densities of the transformed damage 

features are plotted in Fig. 5 for different sensors at 

damage conditions D11 to D15. Therefore,  although 

the existence of damages can be  detected by observing 

 

 
 
Fig. 2: Geometry of the beam 

 
 
Fig. 3: Smaller data samples generated in reference data sets 

 

 
 
Fig. 4: Smaller data samples generated in healthy and damage 

data sets 

 

 
 

 
 
Fig. 5: Probability density plots of the transferred damage 

features for sensors1 1 to 15 for different damage 
conditions at the damage location 

 
the deviations in the probability density plots of the 

damage features with respect to the healthy condition of 

the beam, it is difficult to quantify the extent of 

damages by measuring the amount of deviations. In 

order to identify the damage location, the amount of 

deviation in the probability density plots should be 

compared between different sensors. 
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Table 1: Average correlation values between the coefficients of the AR models fitted to the matched data samples in the healthy and damage data 

sets and the reference data sets 

Sensor  Healthy D11 D12 D13 D14 D15 D21 D22 D23 D24 

1 0.993 0.952 0.967 0.952 0.937 0.944 0.946 0.95 0.927 0.958 

2 0.992 0.914 0.962 0.916 0.901 0.903 0.901 0.903 0.921 0.936 

3 0.99 0.959 0.965 0.958 0.908 0.915 0.917 0.921 0.946 0.974 

4 0.991 0.951 0.976 0.952 0.944 0.938 0.938 0.947 0.937 0.973 

5 0.991 0.967 0.964 0.968 0.931 0.928 0.929 0.925 0.942 0.983 

6 0.995 0.975 0.967 0.975 0.967 0.954 0.954 0.965 0.954 0.987 

7 0.995 0.985 0.971 0.986 0.956 0.943 0.942 0.946 0.948 0.985 

8 0.992 0.965 0.965 0.965 0.951 0.937 0.939 0.944 0.941 0.976 

9 0.992 0.972 0.973 0.976 0.957 0.911 0.916 0.953 0.927 0.977 

10 0.985 0.966 0.97 0.967 0.938 0.926 0.928 0.939 0.925 0.956 

11 0.982 0.944 0.968 0.945 0.908 0.897 0.899 0.914 0.913 0.968 

12 0.987 0.971 0.977 0.973 0.924 0.928 0.928 0.921 0.905 0.946 

13 0.981 0.958 0.969 0.958 0.945 0.925 0.925 0.934 0.923 0.953 

14 0.986 0.976 0.977 0.976 0.935 0.928 0.927 0.922 0.918 0.965 

15 0.984 0.969 0.976 0.969 0.938 0.939 0.941 0.944 0.938 0.953 

 
Table 2: Average damage features extracted from different sensors at different conditions of the beam 

Sensor  Healthy D11 D12 D13 D14 D15 D21 D22 D23 D24 

1 1.23 1.46 1.53 1.76 1.94 1.17 1.49 2.21 2.36 1.78 

2 1.19 1.35 1.45 2.84 2.75 1.94 2.31 3.24 3.76 2.08 

3 1.43 2.17 1.76 2.38 3.37 2.15 2.95 4.37 4.88 3.48 

4 1.21 1.98 1.54 1.98 3.90 2.06 3.15 4.82 5.94 3.68 

5 1.23 5.55 4.06 5.56 8.05 6.49 7.12 10.88 13.66 9.09 

6 1.36 1.83 1.55 1.71 2.34 2.61 3.55 4,16 4.95 2.88 

7 1.21 2.03 1.68 1.75 2.65 2.43 2.89 5.53 4.70 2.96 

8 1.21 2.04 1.53 1.69 2.43 1.86 2.16 4,17 3.56 2.57 

9 1.21 2.59 1.79 2.55 4.37 2.26 2.99 6.27 6.75 4.33 

10 1.23 1.81 1.46 1.64 4.51 2.69 4.03 6.66 8.15 5.54 

11 1.19 2.23 1.86 2.13 4.55 3.17 4.64 8.41 9.75 7.76 

12 1.47 2.65 1.98 2.26 4.49 3.69 5.73 7.68 8.36 5.76 

13 1.18 1.79 1.43 1.89 2.88 1.65 2.09 3.88 4.32 3.43 

14 1.16 1.73 1.54 1.64 3.30 2.97 3.15 6.55 4.27 3.25 

15 1.22 2.25 1.57 1.96 4.45 2.05 3.16 5.64 6.77 4.37 

 

 

 
 
Fig. 6: Fisher criterion calculated for different sensors at (a) 

D11, (b) D12 damage conditions 

 
The sensor which corresponds to the highest value 

of the calculated Fisher criterion is potentially a sensor 

located close to the physical damage location. The 

calculated Fisher criterion values in Fig. 6 are related to 

the conditions where damage was only induced at the 

damage location. 

CONCLUSION 

 

This research focuses mainly on developing a new 

damage feature to identify location of damages. The 

research established a damage diagnosis method based 

on combination of AR-ARX time series models for 

identifying existence of damage and uses it to identify 

location of damage in a two-span steel beam. The 

results of experiment proposed damage diagnosis 

method is able to locate the general damage region in 

bridge girders. 
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