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Abstract: One of the major problems encountered in the prediction of the hereditary viscoelastic behavior of 

polymeric composites, is the determination of the heredity kernels. This issue comes down to the identification of 

the model characterizing the viscoelastic properties of these materials. The purpose of this work is to propose a 

model for prediction of viscoelastic nonlinear behavior of a composite laminate matrix polyester KACT-B by the 

study and analysis of the heredity kernels and their influence on the life time of this material. The identification of 

this model required the experimental determination at room temperature, of the viscoelastic parameters of the 

heredity kernels by a macroscopic approach. These data provide predictive tools for the establishment of the life 

time under static complex solicitation and yield strength in the long term for this type of material. Sufficiently 

interesting in terms of concept and methodology, experimental tests in this study, performed on polymeric fiberglass 

composite, are still few but develop at a pace that we can look in the near future access suitable for purposes of 

design data. 
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INTRODUCTION 

 
According to the nature of resins in their 

manufacture, the polymeric composites frequently 
present linear or nonlinear viscoelastic properties. In 
particular, for some fiberglass polymeric composites, 
the behavior becomes nonlinear before reaching strains 
corresponding to normal use constraints (Schapery, 
2000; Zhang and Xiang, 1992; Brinson and Tuttle, 
1986).The principle of superposition of Boltzmann 
being no more applicable in this case, models taking 
into account of this phenomenon should be used 
(Pobedria, 2007) . On the other hand, factors such as 
temperature and the history of the constraints will 
considerably affect the life time under solicitation 
(Sullivan, 1990; Augl, 1987; Suvorova, 2010). 

The question of the determination of the influence 

functions of nonlinear viscoelastic models of polymeric 

fiberglass composites is only partially addressed in the 

technical literature and few models are proposed. These 

models are unfortunately not robust. One of the major 

difficulties encountered in the establishment of these 

models lies in the experimental identification of 

viscoelastic parameters of the material taking strictly 

into account the viscoelastic nonlinear behavior thereof. 

On the other hand, one of the current problems in the 

study of the composites is the prediction of their 

holding in the long term, necessary for the design of 

structures based on these materials. This theme based 

approaches are based on models of damage and 

hereditary creep in which assessment of the long-term 

behavior models must establish as integral operators 

(Schapery, 1997; Dimitrienko and Yu, 1989). In these 

conditions, one of the critical issues is the 

determination of the type of influence functions or 

kernels of operators and their parameters. The 

experimental data on these issues are very few much. 

The objective of this study is to study and analyze the 

possible influence functions through the experimental 

determination of their parameters in order to assess 

their impact on the life time of fiberglass composites. 

 

MATERIALS AND METHODS 
 

The object of the study material is an orthotropic 

laminate  glass/polyester  composite orthogonal 2D 

(Fig. 1). Anisotropic nonlinear viscoelastic models are 

based mostly on approaches damaged functions of the 

tensors of damage. At the macroscopic scale, these 

approaches are similar Goldenblat-Kopnov functional 

anisotropic damage ø(t) long term criterion: 



 

 

Res. J. Appl. Sci. Eng. Technol., 6(12): 2181-2186, 2013 

 

2182 

 
 

Fig. 1: Laminate glass/polyester composite  
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This non-linear model is based on a coupling 

Mises-Hill plastic potential for anisotropic materials 

and A.A. Ilyushin kinetic approach,  

 

where, 

t = Is the time after the loading of the 

material 

ζ  
= Including time in the interval 0≤ζ≤t  

σik (ζ), σmn(ζ) = Functionals setting program loading of 

the material; Argument (t-ζ) assumes 

their invariance in loading  

�ik and �ikmn = The heredity kernels of the model 

proposed in the present study 

 

The expression (1) assumes that the first full 

operator including the linear components of the stress 

tensor is linear pulse input σik (ξ) dξ and corresponding 

heredity kernel σik (t-ξ), in the total value of the damage 

ф (t). 

Similarly, the second term of (1) is the joint 

influence of the two previous pulses σik (ξ1) dξ1, σmn (ξ2) 

dξ2 and the kernel ωikmn (t-ξ1, t-ξ2) on the total value of 

the damage.
 

The third approximation, in principle, is operated 

in a similar manner on three previous time intervals and 

so on. Therefore the global supply of pulses in the 

functional ф (t) would be the sum of the input linear, 

quadratic, cubic, etc.
 

The expression (1) is limited to linear and 

quadratic terms because this model assumes that tensor 

heredity kernel should respectively be the second and 

fourth order that preserves the invariance of the model 

to the transformation groups.
 

Accordingly, the heredity kernels must meet the 

following conditions:
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The first condition means that the model must keep 

its invariance to the origin of the time. 
The second condition means that with the 

increasing of ζ, the influence of the stresses occurring 
in the final moments also increases on the rate of 
damage to the material. That is why the determination 
of the heredity kernels is critical to the assessment of 
long term of the material held. 

The shape of the heredity kernel of the model must 
be specific to each material. Especially for the 
polymeric composites reinforced fiberglass a functional 
relationship must be established with the static strength 
tensor (Pobedria, 1983) to be of the form: 
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Πik and Πikmn are static resistance respectively the 

second and fourth order tensors; the functions �1 and �2 
must be determined by tests of resistance in the long 
term. 

For the composite laminate object of the study, we 
will consider the Abelian kernel: 
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where, β and a are parameters to be determined by 
uniaxial testing in the long term; 
 
a = Expressed in [time] 

β
  

β = Without unit 
 
We will adopt a loading of the form: 
 

r
ikik ξσξσ ⋅=

)0(
)(  

 
For a static loading . r = 0, so: 
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Legend: 1, 2, 4-loading system of the test piece; 3-test tube; 5 -electronic lock and data logger 

 
Fig. 2: Experimental long term testing device on glass/polyester composite 
 

 
 

Fig. 3: Tubular tube in glass/polyester composite  

 
Expression (1) then becomes: 
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The limit state, t becomes the time of failure t* of the 

material, so: 
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For a uniaxial solicitation, the expression (8) will 

be: 
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and the limit of long term strength of the material as 

an expression: 
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σb is the limit of resistance of the material in uniaxial 
solicitation. 

The expression (8) represents the life time of the 
material under static solicitation. 

In this expression the part in parentheses is known, 
the determination of the parameters a and β of the 
heredity kernels is necessary for the prediction of the 
life time for this type of loading. 

 

RESULTS AND DISCUSSION 

 
Description of the test: The parameters a and β are 
determined by long term strength in uniaxial 
compression tests, using an experimental device used 
for testing of deformation. This device is equipped with 
an electronic clock to set the time corresponding to a 
given level of stress including the time of rupture of the 
test piece (Fig. 2). The tests are performed on tubular 
composite tubes with fiberglass reinforced polyester 
matrix (Fig. 3): reinforcements meaning string are 
arranged along the longitudinal axis while 
reinforcements meaning frame are arranged on the 
circular side of the tube, all drowned in a polymer 
polyester matrix. 
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Fig. 4: Experimental points and Abelian kernel approximation curves 

Table 1: Values of parameters a and β 

Break time inter vals *t<10 h 
--------------------- 

*t
------------------

 β
 

a, (hβ-1)
 

β
 

Values 0.63 1.02 0.98

 
Determination of the parameters β

 
and a:

value limit of resistance σb of the material (the value 
determined by the breakdown of the material testing), it 
determines the loading values for the test in the long 
term. 

In our case, these values were taken respectively 
0.9 σb; 0.8σb ; 0.7σb and 0.6σb. For the object of the 
study material. σb = 98 MPa. 

The expression (9) requires that testing should 
occur to both temporal intervals: 
 

• A first campaign of tests for a range of small life
*t<10 h 

• A second campaign of tests performed for a domain of 
major life-spans *t>10 h. 

 
For these tests, we use the constraint standardized 

report σbi./σb: 
The numerical values of the parameters 

determined using experimental points in Fig. 4 and 
expression (9) are given in Table 1. 

Figure 4 shows the results of tests including the 
experimental points and curves approximation of 
resistance in the long term for the two areas of 
longevity. 
 
Explicit forms of heredity kernels and 
determination of the life time and yield long term 
strength: The values of the thus determined parameters 
provide explicit forms of heredity kernels.
Thus, for the areas of major longevities we have:
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Fig. 4: Experimental points and Abelian kernel approximation curves  
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determined by the breakdown of the material testing), it 
determines the loading values for the test in the long 

In our case, these values were taken respectively 
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The expression (9) requires that testing should 
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A second campaign of tests performed for a domain of 
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determined using experimental points in Fig. 4 and 
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In the case of small longevities, we have:
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Curve (1) obtained in the field of small longevities 

gives a better approximation than the curve (2), 
showing that the Abelian kernel which is a power law 
gives more satisfactory results for small periods of 
loading. However many works related to long term
on polymeric composites show that in the case of long
term loading tests, there is an exponential relationship 
between the long-term strength and the duration of the 
loading of the material. Therefore the heredity kernel of 
the model must have an exponential form in the case of 
large longevities. 
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In the case of small longevities, we have: 
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The long term constraint limit will be: 

                         (16) 

Curve (1) obtained in the field of small longevities 
gives a better approximation than the curve (2), 
showing that the Abelian kernel which is a power law 
gives more satisfactory results for small periods of 
loading. However many works related to long term tests 
on polymeric composites show that in the case of long-
term loading tests, there is an exponential relationship 

term strength and the duration of the 
loading of the material. Therefore the heredity kernel of 

ponential form in the case of 
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Indeed, consider the exponential kernels of the 

form: 
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By integrating them in (1) with the same law of 

loading, we would obtain: 
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This is the expression of the life time of the 

material using an exponential kernel. 

The long term constraint limit would be: 
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This last expression shows that, when t→ ∞, σbi* 

tends towards a limit value non-zero. This is a 

considerable advantage because it means that one can 

make predictions of the behavior of the material for 

large domains of longevity. On the other hand 

expression (10) shows that when t→ ∞, σbi* tends 

towards zero. One may infer that the Abelian type 

kernels are better suited for small longevities 

predictions as shown Fig. 4 experimental results. 

The values of the parameters depend on the fields 

of longevity of the material. Asymptotic approximation 

curves boundaries define the values limits of the 

constraints to be taken into account for each type of 

loading. 

On the other hand, the time needed for the rupture 

usually appears on the stress-rupture digraphs whose 

use is obvious. If one knows the stress, one can read the 

life time. If we design for a certain period of life, we 

can read the constraint not to exceed while sizing. 

Failure of many glass/polyester composites can 

intervene earlier than expected and for low levels of 

stress. Therefore when it is a design of structures based 

on these materials, we must be sure that: 

 

• Yield stress in the long term for the life in the 

design is acceptable. 

• The time of breach loading provided by the design 

exceeds the duration of intended use, so the 

material life. 

 

The results of this study show that for the 

prediction of the life of the polymeric fiberglass 

composite particular importance should be given on the 

establishment of the heredity kernels of the predictive 

model. This requires a correct experimental 

identification of the parameters of the kernels taking 

into account the expected operating life. 

 

CONCLUSION 
 

In this study we can retain: 

  

• We present the terms of tests with a long-term 

behavior that generates data required for the 

calculations of design (engineering) and life 

prediction, information unavailable in the technical 

literature. 

• It is preceded to the study and analysis of the 

heredity kernels. We have shown that for the 

purpose of the study material, these kernels are the 

product of static tensors of different orders by only 

the time-dependent functions. 

• A nonlinear viscoelastic model is identified by the 

experimental determination of the viscoelastic 

parameters allowing establishing explicit forms of 

heredity kernels. 

• It is highlighted the influence of these parameters 

therefore the heredity kernels on the prediction of 

the composite life. In particular, we have shown 

that Abelian kernels respond well to predictions 

from small periods of loading tests while for long 

loading times tests, exponential kernels are better 

suited for the prediction of the long term behavior 

of the material. 

• It is proposed formulas for the determination of the 

life time of the polymeric composites, obtained for 

Abelian and exponential kernels. 

• The expressions for the calculation of the limit of 

resistance in the long term of this material are 

obtained. 

 

This proposed prediction method gives the 

possibility to establish the behavior of the material for 

long periods of operation and may be useful in 

engineering calculation for the assessment of the 

resistance in the long term of these materials. 
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