
Research Journal of Applied Sciences, Engineering and Technology 6(11): 2052-2060, 2013

DOI:10.19026/rjaset.6.3823

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2013 Maxwell Scientific Publication Corp.

Submitted: November 27,2012 Accepted: January 11, 2013 Published: July 25, 2013

Corresponding Author: M. Hemalatha, Department of Computer Science, Karpagam University, Coimbatore
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

2052

Research Article
Efficient Malware Detection and Tracer Design for Operating System

A. Edwin Robert and M. Hemalatha
Department of Computer Science, Karpagam University, Coimbatore

Abstract: Modern computer systems are built on a foundation of software components from a variety of vendors.
While critical applications may undergo extensive testing and evaluation procedures, the heterogeneity of software
sources threatens the integrity of the execution environment for these trusted programs. For instance, if an attacker
can combine an application exploit with privilege escalation vulnerability, the Operating System (OS) can become
corrupted. The importance of ensuring application integrity has been studied in prior study; proposed solutions
immediately terminate the application once corruption is detected. Mandatory Access Control (MAC) in a
commercial operating system to tackle malware problem is a grand challenge but also a promising approach. The
firmest barriers to apply MAC to defeat malware programs are the incompatible and unusable problems in existing
MAC systems. The major aim of our study is to address these issues and to analyse 2,600 malware samples and
component one by one and two types of MAC enforced operating systems and then design a novel Efficient
Malware Detection and Tracer design (EMDT) using Hidden Markov model, which incorporates intrusion detection
and tracing in a commercial operating system which leverages efficient coding and authentication schemes with our
proposed approach conceptually consists of three actions: detecting, tracing and restricting suspected intruders .The
novelty of the proposed study is that it leverages light-weight intrusion detection and tracing techniques to automate
security label configuration that is widely acknowledged as a tough issue when applying a MAC system in practice.
The other is that, rather than restricting information flow as a traditional MAC does, it traces intruders and restricts
only their critical malware behaviours, where intruders represent processes and executables that are potential agents
of a remote attacker. Our prototyping and experiments on Windows operating system show that Tracer can
effectively defeat all malware samples tested via blocking malware behaviours while not causing a significant
compatibility problem.

Keywords: Detection, intrusion, malware, tracing, vulnerability

INTRODUCTION

Malicious software (i.e., Malware) has resulted in

one of the most severe computer security problems
today. A network of hosts which are compromised by
malware and controlled by attackers can cause a lot of
damages to information systems. As a useful malware
defence technology, Mandatory Access Control (MAC)
works without relying on malware signatures and
blocks malware behaviours before they cause security
damage. Even if an intruder manages to breach other
layers of defence, MAC is able to act as the last shelter
to prevent the entire host from being compromised.
However, as widely accepted Li et al. (2007), Fraser
(2000) and Wang et al. (2008) existing MAC
mechanisms built in commercial operating systems
(OS) often suffer from two problems which make
general users reluctant to assume them. One problem is
that a built-in MAC is incompatible with a lot of
application software and thus interferes with their
running (Li et al., 2007; Fraser, 2000; Wang et al.,
2008) and the other problem is low usability, which

makes it difficult to configure MAC properly (Li et al.,

2007). Our observations are as follows: The

incompatibility problem is introduced because the

security labels of existing MACs are unable to

distinguish between malicious and benign entities,

which Causes a huge number of False Positives (FP)

(i.e., treating benign operations as malicious) thus

preventing many benign software from performing

legal operations; the low-usability problem is

introduced, because existing MACs are unable to

automatically label the huge number of entities in OS

and thus require tough configuration work at end users.

With these investigation results, our main objective is

to propose a novel MAC enforcement approach EMDT,

this consists of three actions:

• Detection, tracing and restriction. Each process or
executable has two states, suspicious or benign.
The contributions of this study are

• We introduce EMDT, a novel MAC enforcement
approach which integrates intrusion detection and

Res. J. Appl. Sci. Eng. Technol., 6(11): 2052-2060, 2013

2053

tracing techniques to disable malware on a
commercial OS in a compatible and usable manner.

• We have implemented EMDT to disable malware

timely without need of malware signatures

We investigate the root reason so find

compatibility and low usability problems of existing
MACs. Although not all the observations are brand
new, we believe that understanding these reasons more
comprehensively and illustrating them through the
design of an actual system are useful for other MAC
researchers.

RELATED WORK

DTE proposed by Badger et al. (1995) is a classical
MAC model to confine process execution, which
group’s processes and files into domains and types,
respectively and controls accesses between domains
and types. Tracer can be regarded as a simplified DTE
that has two domains (i.e., benign and suspicious) and
four types (i.e., benign, read- protected, write-protected
and suspicious). Moreover, Tracer can automatically
configure the DTE attributes (i.e., domain and type) of
processes and files under the support of intrusion
detection and tracing so as to improve usability.PPI
automates the generation of information flow policies
by analyzing software package information and logs.
MIC implements the no-write-up rule of classical BIBA
model in Windows Vista kernel, but it does not
implement the no- read-down rule in order not to
compromise compatibility significantly. PRECIP Wang
et al. (2008) addresses several practical issues that are
critical to contain spyware that intends to leak sensitive
information. The risk-adaptive access controls
(Kaspersky Lab, 2012). That targets to make access
control more dynamic so as to achieve a better tradeoff
between risk and benefit. Most existing antimalware
technologies are based on detection (Kirda et al., 2006;
Martignoni et al., 2008). Tracer tries to combine
detection and access control so that it not only can
detect but also can block malware behaviours before
their harming security. Antimalware technology that
resembles Proposed EMDT is behaviour blocking
(Nachenberg, 2002) which can confine the behaviours
of certain adverse programs that are profiled in
advance. Many commercial antimalware tools
(Kaspersky Lab, 2012; Viper Inc., 2012) also have a
behaviour-based module to defend against unknown
malware programs.

Malware investigation: Malware contribute to most
Internet security problems. Antimalware companies
typically receive thousands of new malware samples
every day. An analyst generally attempts to understand
the actions that each sample can perform, determines
the type and severity of the threat that the sample
constitutes and then forms detection signatures and

creates removal procedures. Symantec Threat Explorer
(http://www.symantec.com/business/security response/
threat explorer/threats.jsp) is such a publicly available
database which stores the analysis results of thousands
of malware samples from various sources and is thus
valuable to malware researchers. To have a thorough
understanding of the philosophies behind malware
design, we have spent considerable amount of time
analyzing the behaviours of malware programs.
Specifically, since 2008, we have read, recorded and
analyzed the technical details of 2,600 malware samples
of a wide range of formats and varieties, such as
viruses, worms, backdoors, root kits and Trojan horses.
We discovered three common characteristics of
malware that can guide our subsequent antimalware
design:

• Entrance characteristics: All malware samples
break into hosts through two entrances, network
and removable drive. Most breaking instances are
via network through frequently used protocols such
as HTTP and POP3.

Problems in MAC: Incompatibility is a well-known
problem when enforcing a MAC modeling commercial
operating system (Li et al., 2007; Fraser, 2000; Wang
et al., 2008). To investigate its root reason, in a secure
network environment, we set up two machines to run
MAC enforced operating systems with MLS policy
enabled and MAC module enabled. After a few days,
we observed that these MAC systems produced a huge
number of log records about denied accesses, which
indicated that some applications failed and some acted
abnormally. As the operation environment is secure
without intrusion and malware, these denied accesses
are thus “false positive.” However, from the view of
intrusion prevention, these processes do not necessarily
represent intruders so that their “read” or “write”
accesses to the/tmp should not be simply denied.
Although it is possible to resolve this problem by
adding “hiding sub directories” under/tmp, it is still
difficult to eliminate the FPs resulting from many other
shared entities on an OS Relying on these labels, a
MAC system often fails to make correct decisions on
intrusion blocking which eventually results in many
FPs. Low usability is another problem in a MAC-
enabled system, as it often requires complicated
configurations and unconventional ways of usage. In a
modern OS, there are a wide range of entities including
processes, files, directories, devices, pipes, signals,
shared memories, sockets, etc.

PROPOSED SYSTEM

Efficient Malware Detection and Tracer (EMDT): In
this section, we present our EMDT approach that aims
to disable malware in a commodity OS by disallowing
malware behaviours. The a dversaries of EMDT are

Res. J. Appl. Sci. Eng. Technol., 6(11): 2052-2060, 2013

2054

Fig. 1: EMDT overview

malware programs that break into a host through the

network or removable drives. As OSis the most

popularly attractive to hackers, the description of

EMDT is designed Appling it to operating systems with

some changes.

Overview: The design of an access control mechanism

is to define the security label. We introduce a new form

of security label called suspicious label for our EMDT

approach. It has two values: suspicious and benign.

Meanwhile, EMDT only assigns a suspicious label to a

process or an executable, because a process is possibly

the agent of an intruder and an executable determines

the execution flow of a process which represents an

intruder. When a process requests to access these

entities, EMDT mainly utilizes their DAC information

to make access control decisions, thus a huge amount of

configuration work can be reduced while keeping

traditional usage conventions unchanged.

The above Fig. 1 gives an overview of EMDT

which consists of three types of actions, detection,

tracing and restriction. Each process or executable has

two states, suspicious and benign. The restriction action

forbids a suspected intruder to perform malware

behaviours in order to protect CIAP. That is to protect

confidentiality, integrity and availability, as well as to

stop malware propagation. The three actions study as

follows: Once detecting a suspected process or

executable, EMDT labels it as suspicious and traces its

descendent and interacted processes, as well as its

generated executables. EMDT does not restrict benign

processes at all and permits suspicious processes to run

as long as possible but stops their malware behaviours

that would cause security damages.

Table 1: Malware classification based on the behaviour

SI/No Malware

Benign process

Suspicious process

D T R D T R

1 Remote host Nil P A P A D

2 Exec file Nil P A P A D

3 Modify reg Nil P A P A D
4 Copy application Nil P A P A D

5 Obtain system info Nil P A P A D

D-Detected; T-Traced; R-Restricted; P-Possible; A-Allow D-Deny

The object and parameter represent the target and

parameter of the operation, respectively. Specific

malware behaviours monitored in the current version of

EMDT, which contains the 30 critical malware

behaviours shown in Table 1. Moreover, EMDT allows

dynamic addition of new behaviours. The access

control decision of EMDT is made in accordance with

normal MACs. EMDT uses the subject label and

behaviour to make a decision while normal MACs use

the subject label, operation, object label and parameter.

As behaviour consists of operation, object and

parameter, EMDT actually uses the same four factors of

normal MAC decision. Moreover, EMDT’s decision

procedure generates three possible access control

results: “allow,” “deny,” and “change label,” which

resemble those of normal MACs. The detailed decision

logic of Tracer is shown in Table 1. The detection and

tracing actions lead to the decision result “change

label,” while restriction action leads to “deny.” All

access requests not denied are allowed. As an online

approach, Tracer can produce the FP rate lower than

that of behaviour-blocking mechanisms in commercial

antivirus software. This is achieved as a MAC system,

EMDT blocks a behaviour based simultaneously on the

behaviour and security label (i.e., the suspicious label

of the current process), rather than merely the

behaviour as done by a behaviour-blocking system.

Detecting intruders: The detecting action is

responsible for identifying all potential intruders. We

do not intend to design a complex intrusion detection

algorithm to achieve a low FP rate at the cost of heavy

overhead. Instead, we design a light-weight intrusion

detection algorithm that can identify all potential

intruders but may have a relatively higher FP rate at the

initial step. Tracing and restricting actions, will still

allow it to run rather than stop it immediately, but only

prevent it from executing featured malware behaviours.

As depicted in the above Fig. 1, the detection works at

two levels: entrance and interior:

���� = �Benign otherwise →
���������� �� �€p � (1)

where, D (P) is detection of process, signature s belongs

to signature based, it comes in suspicious folder. The

detection at entrance attempts to check all possible

venues through which a malware program may break

Res. J. Appl. Sci. Eng. Technol.,

Fig. 2: The mechanism to dynamically detecting the malware behaviours to OS

Fig. 3: The general architecture of an instantiated HMM

into the system. Dangerous protocols are permitted by
firewalls, thus malware programs often use these
protocols to penetrate firewalls by disguising
themselves as popular software that generate benign
network traffic. Dangerous protocols mainly include
HTTP, POP3, IRC, SMTP, FTP and ICMP. With these
detection approaches enforced, however, two types of
system maintenance tasks, i.e., updating software
through the network and installing software from a
removable drive, cannot be performed because the
processes that perform these tasks are treated as
suspicious. Hence, we provide two means to facilitate
these system maintenance tasks. The Benign Process
and Suspicious Process columns represent that the
processes requesting the behaviours below are benign
or suspicious, respectively. Label executable

process indicate changing the label of related process or
executable to suspicious, respectively. Deny indicates
denying the behaviour. This type of detection will not
bring extra performance overhead since the restricting
action of EMDT also needs to monitor such behaviours
which will be presented in future.

Tracing intruders: To track intruders within an
operating system, one can use OS-level information
flow as done in King and Chen (2003) and Goel
(2005). However, a major challenge for leveraging OS
level information flow to trace suspicious entities is
that, file and process tagging usually leads the entire
system to be floated with “suspicious” labels and thus
incurs too many FPs. To address this issue, we propose
the following two methods to limit the number of

Res. J. Appl. Sci. Eng. Technol., 6(11): 2052-2060, 2013

2055

o dynamically detecting the malware behaviours to OS

The general architecture of an instantiated HMM

the system. Dangerous protocols are permitted by
firewalls, thus malware programs often use these
protocols to penetrate firewalls by disguising
themselves as popular software that generate benign
network traffic. Dangerous protocols mainly include

POP3, IRC, SMTP, FTP and ICMP. With these
detection approaches enforced, however, two types of
system maintenance tasks, i.e., updating software
through the network and installing software from a
removable drive, cannot be performed because the

hat perform these tasks are treated as
suspicious. Hence, we provide two means to facilitate
these system maintenance tasks. The Benign Process
and Suspicious Process columns represent that the
processes requesting the behaviours below are benign

executable and Label
indicate changing the label of related process or

executable to suspicious, respectively. Deny indicates
. This type of detection will not

bring extra performance overhead since the restricting
action of EMDT also needs to monitor such behaviours

To track intruders within an
level information

flow as done in King and Chen (2003) and Goel et al.
(2005). However, a major challenge for leveraging OS
level information flow to trace suspicious entities is
that, file and process tagging usually leads the entire

ed with “suspicious” labels and thus
incurs too many FPs. To address this issue, we propose
the following two methods to limit the number of

tagged files and processes in a single OS while
preventing malware programs from evading the tracing
as much as possible. For tagging files, unlike the
approaches in King and Chen (2003) and Goel
(2005) the schemes of many malware detection and
MAC systems (Fraser, 2000; Wang
trace information flow on OS level, Tracer only focuses
on the tagging of executables while ignoring
nonexecutables and directories. This is because an
executable represents the possible execution flow of the
process loading it, thus it should be deemed as an
inactive intruder while a process is considered as an
active intruder (Fig. 2).

For tagging processes, we observed that the

excessive number of tags mainly come from tracing

Interposes Communication, i.e., marking a process as

suspicious if it receives IPC data from a suspicious

process. To address this issue, Tracer

process receiving data from dangerous IPCs that can be

exploited by a malware program to take control of the

process to perform arbitrary malicious behaviours.

Concretely, we analysed all vulnerabilities recorded in

security bulletins related to named

procedure calls, shared memories, mail slots, IPCs send

free-formed data that can be crafted to exploit bugs in

the receiving process by hidden morkov model (Fig. 3).

The Fig. 3 above shows the general architecture of

an instantiated HMM. Each oval shape represents a

random process that can adopt any of a number of files.

The random process (t) is the hidden state at

time t (with the model from the above diagram,

{x1, x2, x3}. The Malware, y(t) is th

time t (with y (t) ε {y1, y2, y3, y4 }). The

diagram denote conditional dependencies of the files .In

the standard type of hidden Markov model considered

here, the state space of the hidden variables is discrete,

while the observations themselves can either be discrete

(typically generated from a categorical distribution) or

continuous (typically from a Gaussian distribution).

tagged files and processes in a single OS while
preventing malware programs from evading the tracing

sible. For tagging files, unlike the
approaches in King and Chen (2003) and Goel et al.
(2005) the schemes of many malware detection and

Wang et al., 2008) that
trace information flow on OS level, Tracer only focuses

ng of executables while ignoring
nonexecutables and directories. This is because an
executable represents the possible execution flow of the
process loading it, thus it should be deemed as an
inactive intruder while a process is considered as an

For tagging processes, we observed that the

excessive number of tags mainly come from tracing

Interposes Communication, i.e., marking a process as

suspicious if it receives IPC data from a suspicious

process. To address this issue, Tracer only tags a

process receiving data from dangerous IPCs that can be

exploited by a malware program to take control of the

process to perform arbitrary malicious behaviours.

Concretely, we analysed all vulnerabilities recorded in

o named-pipes, local

procedure calls, shared memories, mail slots, IPCs send

formed data that can be crafted to exploit bugs in

the receiving process by hidden morkov model (Fig. 3).

above shows the general architecture of

HMM. Each oval shape represents a

random process that can adopt any of a number of files.

) is the hidden state at

(with the model from the above diagram, x (t) ε

Malware, y(t) is the observation at

}). The arrows in the

diagram denote conditional dependencies of the files .In

the standard type of hidden Markov model considered

here, the state space of the hidden variables is discrete,

lves can either be discrete

categorical distribution) or

Gaussian distribution).

Res. J. Appl. Sci. Eng. Technol., 6(11): 2052-2060, 2013

2056

The parameters of a hidden Markov model are of two

types, transition probabilities and emission

probabilities (also known as output probabilities). The

transition probabilities control the way the hidden state

at time t is chosen given the hidden state at time t-1.

The hidden state space is assumed to consist of one of

N possible values, modeled as a categorical

distribution. (The section below on extensions for other

possibilities.) This means that for each of the N

 possible states that a hidden variable at time t can be

in, there is a transition probability from this state to

each of the N possible states of the hidden variable at

time t+1 , for a total of � transition probabilities.
Note that the set of transition probabilities for

transitions from any given state must sum to 1. Thus,

the N×N matrix of transition probabilities is a Markov

matrix. Because any one transition probability can be

determined once the others are known, there are a total

of N(N-1) transition parameters.

In addition, for each of the N possible states, there
is a set of emission probabilities governing the
distribution of the observed variable at a particular time
given the state of the hidden variable at that time. The
size of this set depends on the nature of the observed
process of malware. For example, if the observed
malware is discrete with M possible values, governed
by a signature based system distribution, there will
be M-1 separate parameters, for a total of N(M-
1) emission of hidden malware in the system over all
hidden states in the code or process. On the other hand,
if the observed malware is an M -dimensional vector
distributed according to an arbitrary multivariate
Gaussian distribution, there will be M parameters
controlling the means and M(M+1)/2 parameters
controlling the covariance matrix, for a total
of emission parameters.

N (M + M(M + 1)/2) = NM(M+3)/2 = O(NM
2
)

 (In such a case, unless the value of M is small, it

may be more practical to restrict the nature of the

covariance’s between individual elements of the

observation vector, e.g. by assuming that the elements

are independent of each other, or less restrictively, are

independent of all but a fixed number of adjacent

elements.)

• Probability of an observed sequence of

malware:The task is to compute, given the

parameters of the model, the probability of a

particular output sequence. This requires

summation over all possible state sequences:

The probability of observing a sequence Y = y(0) ,

y(1), …, y (L-1) Of length L is given by

P(Y) = ∑ ��"│$�% ��$�

where, the sum runs over all possible hidden-node
sequences:

X = x(0), x(1), …, x (L-1)

Applying the principle of dynamic programming,
this problem, too, can be handled efficiently using
the forward algorithm. Probability of the latent files in
Software’s: A number of related tasks ask about the
probability of one or more of the latent files, given the
model's parameters and a sequence of observations
y(1), …, y(t).

• Filtering: The task is to compute, given the
model's parameters and a sequence of observations,
the distribution over hidden states of the last latent
contents at the end of the sequence, i.e., to

compute ��&�'�│(�1�, … , (�'��. This task is
normally used when the sequence of latent
variables is thought of as the underlying states that
a process moves through at a sequence of points of
time, with corresponding observations at each point
in time. Then, it is natural to ask about the state of
the process at the end. The result reveals that in
reality it is quite difficult to propagate malware
through local IPCs within an OS. Consequently;
Tracer employs a Dangerous-IPC-List to record
and trace each type of dangerous IPC since there
should be a very limited number of dangerous IPCs
in an OS. Therefore, we have the following tracing
rules to mark entities as suspicious:

• A process spawned by a suspicious process

• An executable or semi executable created or
modified by a suspicious process

• A process loading an executable with a suspicious
label

• A process receiving data from a suspicious process
through a dangerous IPC and A process reading a
semi executable or script file with a suspicious
label

A script file is written in interpreting language,

e.g., JavaScript or VBScript and thus needs execution
engine, e.g., wscript.exe or cscript.exe, to load and run
it. Accordingly, to defend against a script virus, Tracer
should restrict the engine processes that are reading and
interpreting a suspicious script file. On the other hand, a
semi executable represents certain types of data files
that might contain executable codes, which mainly
involves various types of compressed files and
Microsoft Office documents (Microsoft, 2012).

Restricting intruders: In order to disable malware
programs on a host, the restricting action monitors and
blocks intruders’ requests for executing critical
malware behaviours listed in Table 2. To follow the
principle of complete mediation for building a security
protection system, Tracer further restricts two extensive

Res. J. Appl. Sci. Eng. Technol., 6(11): 2052-2060, 2013

2057

 Table 2: Critical malware behaviour for host based system

Malware type

Ranking based

on behaviour Harming type

• Communicate with remote
host 1000 High

• Create executable file 950 High

• Modify register for start up 900 High

• Copy the important
application and files 800 High

• Obtain system information 750 High

• Inject into other process 500 High

• Modify executable file 450 High

• Create or modify OS series 400 High

• Change security setting 200 High

• Add unwanted plug ins 100 High

behaviours, called generic malware behaviours, to

protect security more widely. The first one is “Steal

confidential information,” which represents all illegal

reading of confidential information from files and

registry entries. The other is “Damage system

integrity,” which represents all illegal modifications of

the files and registry entries that require preserving

integrity. In addition, other behaviours that can be used

to bypass Tracer mechanism also need to be monitored

and restricted, including “Change file attributes,”

“Change registry entry attributes,” “Execute non

executable files,” and “Execute Tracer special system

calls.” The behaviour “Change file attributes”

represents changing file extension names to executable

or changing file DAC information. All behaviours

restricted are listed on the column “restrict” in Table 2.

In summary, the restricting action consists of three rules

(Fig. 4):

• Restricting critical malware behaviours

• Restricting generic malware behaviours

• Restricting behaviours bypassing Tracer

By mediating all these behaviours, Tracer is able to

preserve system security and prevent a malware

program from propagating itself in the system. To be

specific, confidentiality is mainly achieved by blocking

the generic behaviour “Steal confidential information;”

integrity is mainly protected by blocking the generic

behaviour “Damage system integrity;” availability is

defended by blocking the behaviours listed in Table 2

with the capital letter A attached; propagation is

prevented by blocking the behaviours in Table 2 with

the capital letter P attached. Meanwhile, blocking these

behaviours can help to defend against unknown

malware programs for two reasons. First, these

behaviours are extracted from thousands of malware

samples and thus represent popular hacking techniques

that are often used in unknown malware programs by

malware authors. To efficiently restrict these malware

behaviours, two issues need to be addressed. The first is

how to determine the generic malware behaviours. We

identify behaviours “Steal confidential information”

and “Damage system integrity” by monitoring illegal

reading on read-protected objects and illegal writing on

write-protected objects, respectively. However, it is

difficult to identify the objects that need protection

among a large number of candidates in a OS in order to

recognize the generic malware behaviours.

The algorithm 1 may impose a relatively high

overhead only on the malware processes that frequently

exhibit file copying behaviours but not on benign

processes and the suspected processes that are actually

benign. The algorithms only need to monitor the file-

copying behaviour “Copy itself” by watching the read

operation on the process’ image file. However, in

reality a benign process rarely tries to copy itself, thus

the read-list is often empty and the algorithms do not

need to do anything. It only needs to read an executable

in two situations while such read operations do not need

to be recorded into the read-list.

Algorithm 1: Monitoring the Application Process:

Input: File to be read, Buffer reader

Process:

If (File! = Copying Behaviour)||(Current Process = =

Benign)

Return Operation To Buffer

Fig. 4: Dynamically restricting and detecting the malware behaviours using EMDT process

Res. J. Appl. Sci. Eng. Technol., 6(11): 2052-2060, 2013

2058

For (Node of file = Read list of Buffer)

If (File = = Node)

Statement: Attach the File in the Buffer reader

Else Statement: copy the File into Node (Stack) for

Blocking

Then Copy the file into buffer

Return (permit the File to monitor)

Algorithm 2 is given below for detection that

correlate read and writes operations by comparing

buffer contents are more difficult to be circumvented

than other candidate algorithms, e.g., comparing buffer

addresses. In the worst case that a malware program

successfully circumvents the algorithms, EMDT still

can tail it by monitoring related behaviours, e.g.,

“Create executables,” since file-copying behaviours

need to create executables.

Algorithm 2: Detecting the Malware Process:

Input: File to be read, Buffer writer

Process:

If (File ! = Copying Behaviour)||(Current Process = =

suspicious)

Return Operation To Buffer

For (Node of file = Read list of Buffer)

If (File==Node)

Statement: Attach the File in the Buffer writer

Else

Statement:

Blocking file from Corruption Then

Copy the malware type into buffer writer

Return (Malware type to buffer)

Dynamic changes of malware behaviours detection

process: If the detection is purely based on known

malware characteristics and behaviours, a detector may

not be able to function effectively in the long run as

new malware characteristics and behaviours may

emerge over the time. To address this limitation (Shan

et al., 2011) a novel extensible mechanism is

implemented in EMDT so it can dynamically add in

new behaviours to monitor. Behaviour consists of

operation, object and parameter. For example, the

operation create-file corresponds to two system calls:

NtOpenFile and NtCreateFile. In contrast, a single

system call may contain more than one operation.

In each concerned system call, we set up one or

more checkpoints, each of which is responsible for

checking the behaviours belonging to the same

operation with the support of a modifiable behaviour

list in memory. The new malware behaviours are read

from a configuration file and distributed to proper

behaviour lists corresponding to different operations in

memory. At each checkpoint, Tracer searches for the

object and parameter currently requested in the

corresponding list to determine whether the current

access forms malware behaviour.

EVALUATION RESULTS

Table 3 is given below describes the detailed test

results of 5 selected malware samples. We can see that

all the malware samples are successfully disabled via

the restriction of their malware behaviours. For

example, the worm “Worm.” downloaded from the

local website has the following main steps for function:

it first copies itself, i.e., regsv.exe, to hard drive in OS,

then runs regsv.exe as a new process, the new process

then adds a value under registry key regsv.exe so that it

can be launched when the system restarts, finally listens

at port 113 to accept commands from a remote attacker.

On a host without EMDT enabled, all above steps are

successfully executed. However, after activating the

EMDT protection, the malware behaviour “Copy itself”

is blocked, i.e., the malware cannot create a new copy

of itself in the system folder. Consequently, the rest of

the behaviours do not appear anymore because these

behaviours depend on the new process launched from

the malware’s copy. In other words, the worm is

disabled.

Performance measures:

Detection rate: It shows the EMDT system detection

rate in percentages with directed graph technique for

multiple OS systems. On an average, 85% of malware

types in the host (OS) can be effectively determined by

proposed system. In processing of EMDT, first system

detects the malware with signature based system after it

detects with machine learning based system to reduce

the false positive rate.

Calculation for false positive: False positive rate = 1-

(No .of True Positive/(No. of True positives+No. of

false Negatives))

The modules that block suspicious behaviours

contribute to most of FPs of the antimalware tools. The

Table 3: EMDT detected malware types

SI/ No Malware type Migrating channels
Behaviour detected by directed graph
technique Behaviour detected by EMDT

1 Worm Website Copy, modify the application content Copy, modify the application content

2 Trojan Website Copy, modify the application content Copy, modify the application content

3 P2P worm

Communication protocol

or channel Damage system integrity Damage system integrity

4 RootKit
Removable drive like pen
drive or CD Corrupt or modify driver softwares Corrupt or modify driver softwares

5 Back Door FTP Driver software corruption Driver software corruption

Res. J. Appl. Sci. Eng. Technol., 6(11): 2052-2060, 2013

2059

Fig. 5: Detection rate of virus through EMDT and directed

graph

Fig. 6: Comparing the false positive rate of EMDT with other

existing technique

fundamental reason is that the antimalware tools

identify a suspicious behaviour only based on the

behaviour itself while Tracer further considers the

suspicious label of the process requesting the behaviour

(Fig. 5 and 6).

CONCLUSION AND FUTURE ENHANCEMENT

In this study, we propose a novel MAC

enforcement approach that integrates intrusion

detection and tracing to defend against malware in a

commercial OS. We have extracted 30 critical malware

behaviours and three common malware characteristics

for the incompatibility and low usability problems in

MAC, which will benefit other researchers in this area.

Based on these studies, we propose a novel MAC

enforcement approach, called EMDT using Hidden

markov model, to disable malware timely without need

of malware signatures or other knowledge in advance.

The novelty of Tracer design is two- fold. One is to use

intrusion detection and tracing to automatically

configure security labels. The other is to trace and

restrict suspected intruders instead of information flows

as done by traditional MAC schemes. EMDT system

doesn’t restrict the suspected intruders right away but

allows them to run as long as possible except blocking

their critical malware behaviours. This design produces

a MAC system with good compatibility and usability.

We have implemented Tracer in several OS and the

evaluation results show that it can successfully defend

against a set of real-world malware programs, including

unknown malware programs, with much lower FP rate

than that of commercial antimalware techniques. In

future we are going to launch this study for a large web

server runs the application front-end logic and data are

outsourced to a database or file server where there is

increase in application and data complexity.

REFERENCES

Badger, L., D.F. Sterne, D.L. Sherman, K.M. Walker

and S.A. Haghighat, 1995. Practical domain and

type enforcement for UNIX. Proceeding of the

IEEE Symposium on Security and Privacy (S&P),

pp: 66-77.

Fraser, T., 2000. LOMAC: Low water-mark integrity

protection for COTS environments. Proceeding of

the IEEE Symposium on Security and Privacy (SP’

00), pp: 230-245.

Goel, A., K. Po, K. Farhadi, Z. Li and E. Lara, 2005.

The taser intrusion recovery system. Proceeding of

the 20th ACM Symposium on Operating Systems

Principles (SOSP ’05), pp: 163-176.

Kaspersky Lab, 2012. Retrieved from:

http://www.kaspersky.com/.

King, S.T. and P.M. Chen, 2003. Backtracking

intrusions. Proceeding of the 19th ACM

Symposium on Operating Systems Principles

(SOSP ’03), pp: 223-236.

Kirda, E., C. Kruegel, V.G. Banks and R.A. Kemmerer,

2006. Behavior-based spyware detection.

Proceeding of the 15th Conference on USENIX

Security Symposium (USENIX-SS ’06).

Li, N., Z. Mao and H. Chen, 2007. Usable mandatory

integrity protection for operating systems.

Proceeding of the IEEE Symposium on Security

and Privacy (SP ’07), pp: 164-178.

Martignoni, L., E. Stinson, M. Fredrikson, S. Jha and

J.C. Mitchell, 2008. A layered architecture for

detecting malicious behaviors. Proceeding of the

11th International Symposium on Recent Advances

in Intrusion Detection, pp: 78-97.

Microsoft, 2012. Mandatory Integrity Control.

Retrieved from: http://en.wikipedia.org/ wiki/

Mandatory_Integrity_Control.

Nachenberg, C., 2002. Behaviors Blocking: The Next

Step in Anti-Virus Protection. Retrieved from:

http://www.securityfocus.com/infocus/1557.

0

1

2

3

4

5

6

7

8

9

10

Virus Worm RootKIT EmailVirus

EMDT

Directed Graph

8.2
3.2

1.8

1.2

False positives

LOMAC

DTE

Directed Graph

EMDT

Res. J. Appl. Sci. Eng. Technol., 6(11): 2052-2060, 2013

2060

Shan, Z., X. Wang and T. Chiueh, 2011. Tracer:
Enforcing mandatory access control in commodity
os with the support of light-weight intrusion
detection and tracing. Proceeding of the 6th ACM
Symposium on Information, Computer and
Communication Security, pp: 135-144.

Viper Inc., 2012. Retrieved from: http://www. vipre.
com/vipre/, 2012.

Wang, X., Z. Li, J.Y. Choi and N. Li, 2008. PRECIP:

Towards practical and retrofittable confidential

information protection. Proceeding of the 15th

Network and Distributed System Security

Symposium.

