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Abstract: The four-moduli Residue Number System (RNS) sets such as {2
n
-1, 2

n
, 2

n
+1, 2

n+1
-1} have attracted a lot 

of researches during recent years. However, nowadays applications require higher dynamic range. This study 
introduces the RNS four-moduli set {2

2n
, 2

n
-1, 2

n
+1, 2

n+1
-1} which is obtained by enhancing the moduli set {2

n
-1, 

2
n
, 2

n
+1, 2

n+1
-1}. This enhancement didn’t increase the total speed of RNS arithmetic unit since the critical modulo 

in both of the moduli sets {2
n
-1, 2

n
, 2

n
+1, 2

n+1
-1} and {2

2n
, 2

n
-1, 2

n
+1, 2

n+1
-1} is 2

n
+1. Besides, an efficient RNS-to-

binary converter for the proposed moduli set is designed using a two-level architecture where a previous converter 
design for subset {2

2n
, 2

n
-1, 2

n
+1} is used in the first level and then a two-channel Mixed-Radix Conversion (MRC) 

algorithm is considered to achieve the final result. Comparison with a recently introduced RNS-to-binary converter 
for a four-moduli set with the same dynamic range show that the proposed design results in higher speed. 
 
Keywords: Mixed-Radix Conversion (MRC), Residue Number System (RNS), reverse converter 

 
INTRODUCTION 

 
Nowadays, the Residue Number System (RNS) 

have found considerable applications such as Digital 
Signal Processing (DSP) and cryptography systems 
where we need high-speed and low-power hardware 
implementations of addition, subtraction and 
multiplications   (Soderstrand  et  al., 1986;  Cardarilli 
et al., 2007; Conway and Nelson, 2004). The RNS have 
capability to perform addition, subtraction and 
multiplication in a fully parallel manner since there is 
not any carry-propagation between residue digits in 
RNS. However, other operations such as division, 
magnitude comparison and sign detection are non-
modular processes that are considered as hard RNS 
operations (Mohan, 2002).  

In order to construct an RNS, first some pair-wise 
relatively prime numbers should be selected to forms 
the moduli set of the system. The product of these 
selected numbers determines the range of numbers 
which can be represented that is called as Dynamic 
Range (DR). To adapt RNS with other digital systems 
two converters are needed. First, binary-to-RNS 
converter transforms the weighted binary number to 
RNS representation by computing the residue of 
division of that number to the each modulo of moduli 
set. Also, RNS-to-binary converter decodes the RNS 
represented number to its equivalent weighted 
representation. In contrast to binary-to-RNS converter, 
the RNS-to-binary converter is so complex. Two 

famous algorithms to perform RNS-to-binary 
conversion are Chinese Remainder Theorem (CRT) and 
Mixed-Radix Conversion (MRC) (Omondi and 
Premkumar, 2007).  

The kind of the moduli set has an important impact 
on other parts of the RNS system. Due to this the 
problem of selection of appropriate RNS moduli set 
attracts many researches during the previous years and 
as a result some moduli sets have been proposed for 
different RNS applications. First, the three-moduli sets 
such as {2

n
-1, 2

n
, 2

n
+1} (Wang et al., 2002), {2

n
-1, 2

n
, 

2
n+1

-1} (Mohan, 2002), {2
n
-1, 2

n
, 2

n-1
-1} (Wang et al., 

2000) and {2
2n
, 2

n
-1, 2

n
+1} (Hiasat and Sweidan, 2004) 

have been considered since the less number of moduli 
results in low-complexity converters. However, the 
need for more parallelism lead to introducing four-
moduli sets such as {2

n
-1, 2

n
, 2

n
+1, 2

n+1
-1}, {2

n
-1, 2

n
, 

2
n
+1, 2

n-1
-1} (Cao et al., 2005) and {2

n
-1, 2

n
, 2

n
+1, 

2
n+1

+1} (Mohan and Premkumar, 2007). Nowadays, 
high-performance applications require larger dynamic 
range. Hence, high DR moduli sets such as {2

n
-1, 2

n
, 

2
n
+1, 2

2n+1
-1}, {2

n
-1, 2

n
+1, 2

2n
, 2

2n
+1}  (Molahosseini 

et al., 2010), {2
n
-1, 2

n
 , 2

n
+1, 2

2n
+1} (Cao et al., 2003) 

and {2
n
-1, 2

n
, 2

n
+1, 2

n+1
-1, 2

n-1
-1} (Cao et al., 2007) 

were proposed.  
In this study, we are going to design efficient 

reverse converter for the large DR four-moduli set {2
2n
, 

2
n
-1, 2

n
+1, 2

n+1
-1} to achieve fast RNS system since 

this moduli set can provide high dynamic range with 

relatively the same total RNS arithmetic unit speed than 
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the moduli set {2
n
-1, 2

n
, 2

n
+1, 2

n+1
-1}. Because the 

critical modulo in the proposed set is 2
n
+1 and so the 

enhanced modulo 2
2n
 is not result in increasing the total 

delay of RNS arithmetic unit. Besides, a two-level 

RNS-to-binary converter for this moduli set is 

proposed. The presented converter uses an existing 

converter for the subset {2
2n
, 2

n
-1, 2

n
+1} followed by a 

two-channel MRC conversion circuit to compute the 

final weighted number based on the composite set 

{2
2n
(2

n
-1)(2

n
+1), 2

n+1
-1}.  

 
LITERATURE REVIEW 

 
The residue number system is constructed based on 

the moduli set {P1, P2, …, Pn} where each two moduli 
Pi and Pj are pair-wise relatively prime (Mohan, 2002; 
Omondi and Premkumar, 2007). Now, a weighted 
number X is showed as (x1, x2, … , xn) where: 
 

i
ii P

XPXx ==  mod                              (1) 

 
In order to convert the RNS number (x1,  x2, … , xn) 

to its equivalent weighted binary number X, the CRT 
has been used usually. On the other hand, the MRC 
algorithm can also do the conversion.  
 
Chinese Remainder Theorem (Omondi and 
Premkumar, 2007): This algorithm describes a method 
to achieve X by some modulo multiplication and 
summation as follows: 

 

M

n

i
iii MNxX ∑=

=1

                 (2) 

 
Note that M is DR, N

i
 = |M

-1
i| Pi  is the 

multiplicative inverse of Mi in modulo Pi and Mi = 
M/Pi.. 
 
Mixed-Radix Conversion (Cao et al., 2005): In 
contrast to CRT which is a parallel algorithm, the MRC 
is a sequential algorithm based on the following 
formulas: 
 

∏ ++++=
=

n

i
in aPaPPaPaX

1
112123...                        (3) 

 
The coefficients ais should be calculated using 

these equations: 

11 xa =                                (4) 
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In this study, MRC is used only for two moduli 
conversion. Hence, the Eq. (6) can be simplified to: 

 

2
2

1

11211121 )(
P

P
PxxPxPaaX
−

−⋅+=+=         (7)  

 

THE RNS-TO-BINARY CONVERSION 

ALGORITHM 
 
The numbers of the moduli set {2

2n
, 2

n
-1, 2

n
+1, 

2
n+1

-1} are pair-wise relatively prime only for even 
values of n. Hence, the RNS-to-binary converter for this 
moduli set works only for even values of n. Besides, 
Due to the properties of this moduli set a two-level 
conversion process is selected to achieve an efficient 
converter. Figure 1 shows the general block diagram of 
the converter.  

The first level relies on an existing RNS-to-binary 
converter for the subset {2

2n
, 2

n
-1, 2

n
+1} (Hiasat and 

Sweidan, 2004). As described in Hiasat and Sweidan 
(2004), the formulas for conversion of residue-
represented number (x1, x2, x3) to the weighted number 
Z are as below: 
 

YxZ
n2
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321321
bitsn

n

bitsn

n xxk
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,3 111000
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This three-modulo converter consists of two 2n-bit 

carry-save adders (CSAs) with end-around carries 
(EACs) followed by a modulo (2

2n
-1) adder which can 

be implemented by a 2n-bit carry-propagate adder 
(CPA) with EAC (Piestrak, 1994).  

The second level uses a two-channel MRC 
algorithm to combine the result of first level with the 
fourth residue. First, the required multiplicative inverse 
is computed using the following lemmas. 

 
Lemma 1: the multiplicative inverse of 2

2n
(2

n
-1)(2

n
+1) 

modulo 2
n+1

-1 is as follows: 
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Fig. 1: The block diagram of the converter 
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Lemma 2: The value of |1/32|

n+1
 -1 can be calculated 

using the following formula where n is even (Cao et al., 
2005): 
 

∑
=
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                          (15) 

 
Proof: The proof described in Cao et al. (2005).

 

Now, 
consider the moduli set {2

2n
(2

n
-1)(2

n
+1), 2

n+1
-1} and 

X=(Z, x4). Using the MRC technique (7), X can be 
computed by this equation: 
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Considering (8), the above equation can be 

rewritten as: 
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where,

 

 

124 1)(
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Substituting the value of k and Z from (14) and (8), 

respectively in (18) results in: 
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Since, x1 and Y are 2n-bit numbers, they have to be 

divided into (n+1)-bit parts. Hence (19) can be written 

as: 

12 1

.
3
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−
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Note that two well-known modulo 2

k
-1 arithmetic 

properties which described in Cao et al. (2005) are used 

in deriving (22)-(26). Next, by substituting (15) in (20) 

we have: 
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This equation can be written as follows: 
 

12

)4()6()4(

1
...

−

+

+
+++=

n

n
PPPT                           (28) 

 
where  P

(i) 
 denotes i-bit circular left shifting of P (Cao 

et al., 2005). 
 

THE HARDWARE ARCHITECTURE OF 

CONVERTER 

 
Hardware realization of the proposed RNS-to-

binary converter for the moduli set {2
2n
, 2

n
-1, 2

n
+1, 

2
n+1

-1} consists of two parts. The first part is the 

circuits for combining the residues x1, x2 and x3 based 

on the moduli set {2
2n
, 2

n
-1, 2

n
+1}. Here, the method of 

Hiasat and Sweidan (2004) is used to implement this 

part. Next, (17) should be implemented to achieve the 

final result. But, before it, the formulas (21) and (28) 

have  to   realize.  The    Eq.(21)  requires  a  (7, 2
n+1

-1)  
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Table 1: Details of converter hardware components 

Parts FA NOT XOR/AND  XNOR/OR  Delay 

Three Moduli Conv. 4n+2 3n+1 n-1 n-1 (4n+2)tFA 

OPU1 3n+1 – – – tNOT 
MOMA1 8n – – – (2n+5)tFA 

OPU2 – – – – – 

MOMA2 ((n-1)(n+1) /2) – – – (2n+l)tFA 
OPU3 – n+1 – – tNOT 

CPA n+1 – – 2n (3n+1)tFA 

Total ((n2-1)/2)+ (16+4)n 4n+2 n-1 3n–1 (11n+8+l)tFA 
+2tNOT 

 

Table 2: Performance comparison 

Parts Hardware requirements Delay 

(Mohan and Premkumar, 2007) (9n+5+k)AFA+(6n+1)ANOT +(2n)AXNOR/OR (11.5n+6)tFA 

(Cao et al., 2005) (n2/2+11n+4)AFA+(3n+2)ANOT (11n+8+l)tFA 

(Molahosseini et al., 2010) (8n+2)AFA + (n–1)AXOR/AND+(4n+1)AXNOR /OR+ (7n+1)ANOT +(n)AMUX2×1 (12n+5)tFA 
Proposed ((n2-1)/2)+(16+4)n)AFA+(4n+2)ANOT +(n-1)AXOR/AND+(3n–1)AXNOR/OR (11n+8+l)tFA 

 

 
 

Fig. 2: Hardware details of the proposed converter 

 

multi-operand modular adder (MOMA) (Piestrak, 1995) 

which can be realized by three (n+1)-bit CSAs with 

EACs followed by an (n+1)-bit CPA with EAC. 

Besides, (28) also needs a (n/2, 2
n+1

-1) MOMA that 

consists of (n+1)-bit CASs with EACs.  

Finally, implementation of (17) can be easily done 

by considering two concatenations. First, since Y is a 

2n-bit number, computation of Y+2
2n
T needs no 

hardware. Then the results of this concatenation should 

be added with two’s complement of T plus one to 

perform the needed subtraction. Therefore, the result of 

this addition should be concatenated with x1 to form the 

weighted number X. Figure 2 shows the details of the 

proposed converter. Besides, Table 1 describes details 

of each component. Note that 2n full adders (FAs) of 

the last CPA can be replaced by 2n XNOR/OR gates 

due to the constant bits of one of the operands. 

Furthermore, tFA is the delay of one FA and l is the 

number of levels of a CSA tree with n/2 inputs. 

 

COMPLEXITY COMPUTATION 
 

Three related studies are selected for comparison. 
First, two RNS-to-binary converters for the (4n+1)-bit 
DR four-moduli set {2

n
-1, 2

n
, 2

n
+1, 2

n+1
-1} (Cao et al., 

2005; Mohan and Premkumar, 2007) are considered. 
Second, the recent RNS-to-binary for the (5n+1)-bit DR 
moduli set (Molahosseini et al., 2010) is also 
investigated. Table 2 compares the hardware 
requirements and conversion delays of these converters. 
Note that the delay of NOT gates ignored in this Table. 
It can be seen from this Table that the proposed 
converter is faster than Molahosseini et al. (2010) and 
also it has relatively the same delay than other two 
converters. However, the converter design of 
Molahosseini et al. (2010) needs less hardware. It 
should be noted that the proposed moduli set has 
(5n+1)-bit DR while the moduli set {2

n
-1, 2

n
, 2

n
+1, 

2
n+1

-1} has (4n+1)-bit DR. So, the proposed converter 
can provide higher DR with relatively the same delay 
than Cao et al. (2005) and Mohan and Premkumar 
(2007).  

 

CONCLUSION 

 

This study presents an efficient RNS-to-binary 

converter for the new RNS moduli set {2
2n
, 2

n
-1, 2

n
+1, 

2
n+1

-1}. The converter for this set is achieved by two-

level converter architecture with better delay compared 

to a recently introduced RNS-to-binary converter for a 

5n-bit DR moduli set. Also, with the new proposed 

moduli set the internal RNS arithmetic circuits can be 
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implemented efficiently that can lead to efficient RNS 

system. 

 

REFERENCES 

 

Cao, B., C.H. Chang and T. Srikanthan, 2003. An 

efficient reverse converter for the 4-moduli set {2
n
-

1, 2
n
, 2

n
+1, 2

2n
+1} based on the new Chinese 

remainder theorem. IEEE T. Circuits-I, 50(10): 

1296-1303. 

Cao, B., C.H. Chang and T. Srikanthan, 2007. A 

residue-to-binary converter for a new five-moduli 

set. IEEE T. Circuits-I, 54(5): 1041-1049. 

Cao, B., T. Srikanthan and C.H. Chang, 2005. Efficient 

reverse converters for the four-moduli sets {2
n
–1, 

2
n
, 2

n
+1, 2

n+1
–1} and {2

n
–1, 2

n
, 2

n
+1, 2

n–1
–1}. IEE 

Proc. Comp. Digit Tech., 152(5): 687-696. 

Cardarilli, G.C., A. Nannarelli and M. Re, 2007. 

Residue number system for low-power DSP 

applications. Proceeding of 41th Asilomar 

Conference on Signals, Systems and Computers. 

Conway, R. and J. Nelson, 2004. Improved RNS fir 

filter architectures. IEEE T. Circuits-II, 51(1): 26-

28. 

Hiasat, A. and A. Sweidan, 2004. Residue-to-binary 

decoder for an enhanced moduli set. IEE Proc. 

Comp. Digit. Tech., 151(2): 127-130. 

Mohan, P.V.A., 2002. Residue Number Systems: 

Algorithms and Architectures. Kluwer Academic 

Publishers, Boston. 

 

 

Mohan, P.V.A. and A.B. Premkumar, 2007. RNS-to-
binary converters for two four-moduli set {2

n
-1, 2

n
, 

2
n
+1, 2

n+1
–1} and {2

n
-1, 2

n
, 2

n
+1, 2

n+1
+1}. IEEE T. 

Circuits-I, 54(6): 1245-1254. 
Molahosseini, A.S., K. Navi, C. Dadkhah, O. Kavehei 

and S. Timarchi, 2010. Efficient reverse converter 
designs for the new 4-moduli sets {2

n
–1, 2

n
, 2

n
+1, 

2
2n+1

–1} and {2
n
–1, 2

n
+1, 2

2n
, 2

2n
+1} based on new 

CRTs. IEEE T. Circuits-I, 57(4): 823-835. 
Omondi, A. and B. Premkumar, 2007. Residue Number 

Systems: Theory and Implementations. Imperial 
College Press, London, pp: 296. 

Piestrak, S.J., 1994. Design of residue generators and 
multioperand modular adders using carry-save 
adders. IEEE T. Comput., 423(1): 68-77. 

Piestrak, S.J., 1995. A high speed realization of a 
residue to binary converter. IEEE T. Circuits-II, 
42(10): 661-663. 

Soderstrand, M.A., W.K. Jenkins, G.A. Jullien and F.J. 
Taylor, 1986. Residue Number System Arithmetic: 
Modern Applications in Digital Signal Processing. 
IEEE Press Piscataway, NJ, USA. 

Wang, W., M.N.S. Swamy, M.O. Ahmad and Y. Wang, 
2000. A high-speed residue-to-binary converter 
and a scheme of its VLSI implementation. IEEE T. 
Circuits-II, 47(12): 1576-1581. 

Wang, Y., X. Song, M. Aboulhamid and H. Shen, 2002. 
Adder based residue to binary numbers converters 
for (2

n
-1, 2

n
, 2

n
+1). IEEE T. Signal Proces., 50(7): 

1772-1779. 

 

 

 

 


