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Abstract: In this study, the buyback policy for two-echelon supply chain in fuzzy demand environment is studied. 
The models of centralized decision and buyback policy are built by the method of fuzzy cut sets theory and their 
optimal policies are also proposed. Finally, an example is given to illustrate and validate the models and 
conclusions. It is shown that the optimal order quantity of the retailer fluctuates at the center of the fuzzy demand 
and decreases with the raise of the customer return rate. The optimal fuzzy expected profits for the manufacturer and 
retailer in supply chain decrease with increasing of the customer return rate. 
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INTRODUCTION 

 
Buyback policy is an instrument for supply chain 

coordination, which shifts the demand uncertain from 
the retailer to the manufacturer, thus encouraging the 
retailer to increase order quantities.  

A large body of literature has explored to 
coordinate the supply chain with buyback policy during 
the last two decades. Pasternack (1985) first claimed 
that an appropriate buyback policy can full coordinate a 
single-supplier single-retailer supply chain, which was 
then extended by Mantrala and Raman (1999) to the 
situation where the retailer has several stores. Lee et al. 
(2000) and Taylor (2001) studied the return contract 
with effort depended demand. They showed that in this 
problem, it attained supply chain coordination 
combined with feedback policy. Yao et al. (2005a, b) 
analyzed the profits of both actors when the 
manufacturer and retailer shared or did not share the 
forecast information in returns policy. Yue and 
Raghunathan (2007) discussed the impact of full return 
policy as well as information sharing on the 
manufacturer and the retailer under information 
asymmetry. Bose and Anand (2007) considered the 
wholesale price as an exogenous price to study returns 
policies for coordinating the supply chain. They showed 
that in general, an equilibrium returns policy was not 
Pareto-efficient with respect to a price only contract, 
but when the wholesale price was sufficiently high, the 
equilibrium returns policy was Pareto-efficient. These 
conclusions were consistent with those of Yao et al. 
(2007). Ding and Chen (2008) studied the coordination 
issue of a three level supply in a single period model. 
Yao et al. (2007) analyzed the impact of price-
sensitivity factors on characteristics of buyback policy 
in a single period  product  supply  chain.  Mollenkopf 
et al. (2007) used an empirical study to explore how 

internet product returns management systems affect 
loyalty intentions. Chen and Bell (2009) showed that 
the customer returns affect the firm’s pricing and 
inventory decision. Chen and Bell (2011) proposed an 
agreement between the manufacturer and the retailer 
that includes two buyback prices. Chen (2011) 
proposed a returns policy with a wholesale-price-
discount scheme that can achieves supply chain 
coordination. Ai et al. (2012) analyzed the 
implementation of full returns policies in the chain-to-
chain competition. 

The conventional studies have focused on the cases 
that the demands are probabilistic. In other words, the 
demands follow certain distribution function. However, 
in practice, especially for new products, the 
probabilities are not known due to lack of history data. 
Thus, the uncertain theory, rather than the traditional 
probability theory is well suited to the supply chain 
models problem. In this study, the demands are 
approximately estimated by experts and regarded as 
fuzzy numbers, which is also used by (Xu and Zhai, 
2010a, b; Hu et al., 2011; Sang, 2012). In this  study, 
Buyback policy in fuzzy demand environment will be 
discussed and the impact of the customer’s return rate 
on the model will be analyzed. 
 

PRELIMINARIES 
 

Consider a single-period setting for a two-echelon 
supply, consisting of a manufacturer and a retailer in 
fuzzy demand. We assume that at the beginning of the 
selling season, the retailer has no inventory on hand and 
must decide the order quantity q from the manufacturer. 
Demand unmet at the end of the selling season is lost. 
The under age cost is g per unit of unmet demand and 
there is an overage cost of h per unit of unsold 
inventory. The retailer is assumed to face customer 
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returns that can not be resold to other customers during 
the sales period because of the single-period setting. 
The customer receives a full refund for returned product 
from the retailer. Let α be the customer return rate, S 
the cost for the retailer dealing with customer returns, w 
be the wholesale price per unit set by the manufacturer 
and c the manufacturer’s production cost per unit. 

In our models, the buyback policy is composed by 
two buyback prices (v, r) where buyback price v applies 
to unsold inventory resulting from demand uncertainty 
and buyback price r applies for returned products from 
customers. 

We consider the uncertain demand faced by the 

retailer as a positive triangular fuzzy variable �� = (d1, 
d2, d3) with the most possible value d2, where 0 < d1 < 

d2 < d3. The fuzzy demand ��  means the demand is 
about d2. d1 and d3 are the lower limit and upper limit 

respectively of the fuzzy demand �� and described by a 
general membership function ���  (x): 
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For x ∈ [d1, d2], the left membership function ��L(x) 
= (x-d1)/(d2 – d1) is an increase function of x. For x ∈ 

(d2, d3], the right membership function ��R(x) = (d3-x) 
/(d3 – d2) is a decrease function of x.  

In order to measure the expected value of a fuzzy 

number ��, we use the ranking method of fuzzy 
numbers proposed by Dubois and Prade (1987): 

 

( ) ( )
1

1 11
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dL RE D D Dλ λ λ− −   = +   ∫% % %                            (2) 

 

Where [��
-1

L (λ), ��-1
R(λ)] is the λ cut set of ��. 

 
BUYBACK POLICY WITH FUZZY DEMAND 

 
Consider a supply chain occupied by an integrated-

actor, which can also be regarded as the retailer and the 
manufacturer making cooperation. The fuzzy profit of 
two-stage supply chain can by expressed as follow: 

 

( ) { } { } { }1 min , max ,0 max ,0SC p D q h q D g D q cq SαΠ = − − − − − − −% % %%    

                                                                                    (3) 
 
The integrated-actor tries to maximize its fuzzy 

expected profit 
SCE  Π 

% by choosing the optimal order 

quantity q, which solves the following model: 
 

( ) { } { } { }Max 1 min , max ,0 max ,0
q SC

E E p D q h q D g D q cq Sα  Π = − − − − − − −   
% % %%  

1 3s. t . d q d< ≤                                                           (4) 

 

Since the fuzzy demand �� = (d1, d2, d3) in Eq. (4), 
is a positive triangular fuzzy number, we know that the 

order quantity q has two cases, i.e., q ∈ [d1, d2] or q ∈ 
[d2, d3]. 
 

Lemma 1: When q ∈ [d1, d2], the fuzzy expected value 

of E[min{��, q}], E[max{q - ��, 0}], and E[max{ �� - q, 
0}],  are respectively given by: 
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Proof: We can get theλ cut set of min{��, 0}, , max{q - 

��, 0}, and max{�� - q, 0}],  under this case: 
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By Eq. (2), we can get the fuzzy expected value of 

{ }m in ,E D q 
 

% , { }max ,0E q D − 
% and { }max ,0E D q − 

%  

as: 
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Lemma 2: When q ∈(d2, d3],  the fuzzy expected value 

of E[min{��, q}],  , E[max{q - ��, 0}],  and E[max{�� - 
q, 0}], are: 
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Proof: We can get the λ cut set of min{��, q}], max{q - 

��, 0},  and max{�� - q, 0} under this case: 
 

{ }
( ) ( )(
( ) ( ) ( ) ](

1

1 1

, , 0, ,
min ,

, , ,1 .

L q R q
D q

L R R qλ

λ λ

λ λ λ

−

− −

  ∈    =     ∈ 

%
 

 

{ }
( ) ( )(

( ) ( ) ( ) ](

1

1 1

0, , 0, ,
max ,0

, , ,1 .

q L R q
q D

q R q L R qλ

λ λ

λ λ λ

−

− −

 − ∈   − =    − − ∈ 

%

 
 

{ }
( ) ( )(

[ ] ( ) ](

10, , 0, ,
max ,0

0,0 , ,1 .

R q R q
D q

R qλ

λ λ

λ

− − ∈   − =   ∈

%
 

 
Similar to the proof of Lemma 1, we can obtain 

Lemma 2. 
 
Theorem 1: When c < p(1- α) + g ≤ h + 2c, the optimal 
order quantity q*

 
is: 
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Proof: When q ∈ [d1, d2], By Eq. (4) and Lemma 1, we 

have the fuzzy expected profit 
SCE  Π 

% as: 
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(5)

 The first and second derivative of 
SCE  Π 

% in Eq. 

(5), can be obtained: 
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Since L(q) is an increasing function with ��  (q) > 0 and, 
(p(1 - α) + h + g)> 0 therefore 2 2d dSCE q Π 

% is 

negative and
SCE  Π 

% is concave in q.  

Hence, the optimal order quantity of the retailer 

can be obtained by solving 
SCd d 0E q Π = 

% , which 

gives ( )( )
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. Since ( )*0 1L q< ≤ , thus 

we get c < p(1- α) + g ≤ h + 2c. 
 
Theorem 2: When p(1 - α) + g > h + 2c, the optimal 
order quantity q*

 
is: 
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Proof: When q ∈, (d2, d3], By Eq. (4) and Lemma 2, we 

have the fuzzy expected profit  
SCE  Π 

% as: 
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The first and second derivative of 
SCE  Π 

% in Eq. 

(6), can be obtained: 
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Since R(q) is a decreasing function with 	
 (q) < 0
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. Since 0<R (q*) ≤1, thus we 

get  p(1- α) + g > h + 2c. 
From Eq. (5, 6) and Theorem 1, 2, we can easily 

obtain the optimal fuzzy expected value of the profit for 
the integrated supply chain, which is given by: 
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We can also express the fuzzy profit of the retailer 

and manufacturer under buyback policy as follows: 
 
( ) { } { } { } { }1 min , min , max ,0 max ,0

R
p D q r D q v q D h q Dα αΠ = − + + − − −% % % %%  

 

 { }max ,0g D q cq S− − − −%                                       (7) 

 

( ) { } { }min , max ,0M w c q r D q v q DαΠ = − − − −% %%

      
(8) 

 
The retailer tries to maximize its fuzzy expected 

profit
RE  Π 

% with the buyback policy (w, v, r) from the 

manufacturer. 
 

Theorem 3: When v = rα and w – c = rα, the buyback 
strategy (w, v, r) can achieve supply chain coordination. 

 

Proof: When q ∈ [d1, d2], the fuzzy expected profit of 
the retailer is: 
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From Eq. (9), we obtain the optimal order quantity 
q**

 
as: 
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                        (10) 

 
Since in order to fully coordinate of the whole 

channel, thus we require q**=q
* in fuzzy buyback policy 

contract. From Eq. (10) and Theorem 1, we can obtain  
v = rα and w – c = rα. 

When q ∈ (d2, d3], the fuzzy expected profit of the 
retailer is: 
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From Eq. (11), we obtain the optimal order 

quantity q** as: 
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In this case, we can also require q

**=q
*, which 

leads to v = rα and w – c = rα. 
 
Remark 1: It should be noted that the result in 
Theorem 3, this buyback is unsatisfactory since it 
provides the retailer with all of the supply chain’s fuzzy 
expected profit unless there is a complementary profit 
sharing agreement between the manufacturer and 
retailer. 

The manufacturer just needs to negotiate a profit 
share (β) with the retailer such that the manufacturer 

obtains 
*

SC
Eβ  Π 

% and the retailer earns ( )
*

1
SC

Eβ  − Π 
%

of the total fuzzy expected profit of the integrated 
supply chain. The manufacturer can negotiate a profit 
share (β) to ensure that the retailer’s fuzzy expected 
profit is at least the profit with no buyback policy 

( )
* *

1 | , 0
SC R

E E r vβ    − Π ≥ Π =   
% % in order to motivate the 

retailer to accept the (w, v, r) buyback policy. For the 
manufacturer to earn at least the fuzzy expected profit 
when it does not offer a buyback policy

* *

| , 0SC ME E r vβ    Π ≥ Π =   
% % . The above discussion leads 

to the proof of Theorem 4. 
 

Theorem 4: When
* *
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| , 0 | , 0
,1M R

SC SC

E r v E r v

E E
β

   Π = Π =   

   Π Π   

 ∈ −  

% %

% %

, the 

(w, v, r) buyback policy is win-win for both the 
manufacturer and retailer. 
 

NUMERICAL EXAMPLE 
 

In this section, we tend to further elucidate the 
proposed fuzzy models with a  numerical  example. We  

Table 1: Equilibrium value of the parameters for different α 

α q* ME  Π 
%  

RE  Π 
%  

SCE  Π 
%  

0.10 
0.20 
0.30 
0.40 
0.50 

221.88 
213.79 
203.85 
191.30 
175.00 

621.19 
489.31 
360.23 
235.04 
115.50 

414.12 
326.21 
240.15 
156.70 
77.00 

1035.31 
815.52 
600.38 
391.74 
192.50 

 

will analyze that the effective of the parameter α on the 

other parameters. 

Suppose the most possible value of the demand is 

d2 = 200 units, the maximum and minimum possible 

value of the demand are respectively, d1=100 units and 

d3 = 300 units, that is to say the fuzzy demand is �� = 

(100, 200, 300). Let p=12$ per unit, c=4$ per unite, 

g=1$ per unit, h=1$ per unit and S=20$. 

The optimal order quantity q
*and fuzzy expected 

profit of the actors in buyback policy can be listed in 

Table 1. 

From Table 1, we analyze the influence of 

parameter α on the optimal equilibrium values as 

below: 

 

• It is obviously from the Table 1 that the optimal 

order quantity q
* will decrease along with the 

customer return rate α when the other parameters 

fixed. Especially, in this numerical example, the 

optimal order quantity equals to the most possible 

value of fuzzy demand when α = 1/3. When 1/3 < α 

< 1 and α < 1/3, the optimal order quantity of 

retailer locate at the left and right of the most 

possible value of fuzzy demand ��, respectively. 

• From Table 1, it can be noted that when the other 

parameters fixed in buyback contract, the fuzzy 

expected profit of the manufacturer, retailer and 

two- echelon supply chain will all decrease along 

with the raise of parameter α. 

 

In addition, the manufacturer can choose any set of 
prices (w, v, r) that satisfy the Theorem 3.3 with w < p 
and will not affect the results in Table 1. For example, 
when α = 0.5, the buyback policies (w =7.5, r=7.0, v = 

3.5) and (w = 7.0, r = 6.0, v = 3.0) lead to identical 
results in Table 1.  
 

CONCLUSION 

 

This study formulates fuzzy supply chain models 
based on fuzzy set theory, where the manufacturer and 
the retailer adopt buyback policy. In order to examine 
models performance in fuzzy demand, we use fuzzy cut 
sets method to solve this problem. The manufacturer 
and the retailer can gain win-win condition by choose 
the set of prices (w, v, r). The method proposed in this  
study is easier to implement and requires less data. It is 
appropriate when the environment is complex, 
ambiguous, or there is lack of statistical data.  
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