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Abstract: Prediction of crack growth under creep condition is prime requirement in order to avoid costly and time-
consuming creep crack growth tests. To predict, in a reliable way, the growth of a major crack in a structural 
components operating at high temperatures, requires a fracture mechanics based approach. In this Study  a novel 
technique, which uses Finite Element Method (FEM) together with Artificial Neural Networks (ANN) has been 
developed to predict the fracture mechanics parameter (C*) in a 1%Cr1%MoV low alloy rotor steel under wide 
range of loading and temperatures. After confirming the validity of the FEM model with experimental data, a 
collection of numerical and experimental data has been used for training the various neural networks models. Three 
networks have been used to simulate the process, the perceptron multilayer network with tangent transfer function 
that uses 9 neurons in the hidden layer, gives the best results. Finally, for validation three case studies at 538°C, 
550°C and 594°C temperatures are employed. The proposed model has proved that a combinations of ANN and 
FEM simulation performs well in estimation of C* and it is a powerful designing tool for creep crack growth 
characterization. 
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INTRODUCTION 

 
Creep crack growth parameter (C

*
): Under constant 

load at high temperatures metals exhibit creep 
deformation. Generally, there are three stages for creep 
deformation, namely primary, secondary and tertiary 
creep stages as shown in Fig. 1. For many materials, 
under steady state conditions (secondary creep rate) the 
stress and creep strain rate, may follow Norton’s creep 
law; ���

� = ����	 , where A and n are material constants 
(which may depend on temperature). A component, 
even prior to service, may contain a number of 
pre-existing defects in the form of cracks. At elevated 
temperatures a body containing a defect may fail by 
creep rupture, fast fracture, creep crack growth or a 
combination of these processes. When subjected to 
stress at elevated temperatures creep crack growth may 
take place by the linking of voids and micro cracks that 
are generated on grain boundaries ahead of the crack 
tip. Failure by creep crack growth is generally found to 
be inter-granular processes (Webster and Ainsworth, 
1994). 

Elastic-plastic fracture mechanics theory has been 
modified to correlate the high temperature crack growth 
data. The C* integral has been used to characterize the 
creep crack growth (Webster and Ainsworth, 1994; 
Rice, 1968; Yatomi et al., 2006). Under steady-state 
conditions, the crack tip stress and strain rate fields are 
characterized by the creep crack growth parameter C

*
. 

For a power law creeping material, C* is given as a 
path independent line integral: 

                                        (1) 

 
where,  
Γ  =  The line integration path  
ds  =  The length along the path Γ  

W*  =  Strain energy density change rate  

T  =  The temperature 
 

                                                         (2) 

 
where (
� �= dui/dt) is displacement rate. The stress and 

strain rate around a crack tip can be expressed by C* 
integral.  
 

                (3) 

 

                (4) 

 

where, r and θ measure distance and polar angle relative 

to the crack tip, In is a parameter which depends only on 

the creep exponent, n; ���
 and ��̃
 are dimensionless 

functions. The parameter  C
*
 may also be interpreted as 

an energy release rate (Webster and Ainsworth, 1994; 

Rice, 1968; Yatomi et al., 2006).  
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Fig. 1: Schematic of creep strain versus time (Djavanroodi and Nikbin, 2006) 

 

                                             (5) 

 

where,  

a  =  The crack length 

B  =  The thickness  

U
*
  =  The potential energy rate 

 

This implies that C
*
 can be calculated from data of 

force versus load–line displacement rate. In laboratory 

tests, C
*
= Determined from the creep load-line 

displacement rate, according to ASTM E1457-01: 

 

bB

P
FC

n

C∆
=

&
*                               (6) 

 
where, 
P  =  The applied load 
b  =  The remaining ligament ahead of the crack  
Bn  =  The net thickness (Bn = B for a specimen 

without side grooves).  
 

The factor, F, depends on geometry and creep 

exponent, n: For a CT specimen F is given by ASTM 

E1457-01 (2002) and Djavanroodi and Nikbin (2006): 

 

F = 
���.���(��

�

�
)

��
�

�

                                                    (7) 

   (7) 

 where,  

a = Crack length and W the specimen width.  

 

In recent years, technical requirements for 

designing against fracture failure at high temperature 

are more demanding. It is difficult to determine the 

optimal design and working parameters by traditional 

approach, such as the use of experimental data or FEM 

approach. Analytical analysis of C
*
 parameter is a 

complex process, mainly because of the limited 

experimental data and analytical functions required for 

calculations, which usually involves the solution of 

complex differential equations. In order to simplify this 

complex process, a methodology has been developed to 

predict C*. The capability of the developed model is 

also investigated. 

 
Artificial Neural Networks (ANN): In the past twenty 
years, Neural Networks Technique (NN) has been 
widely applied into many areas of engineering, such as 
control system, pattern recognition, system 
identification, decision making and so on. Neural 
networks has shown to have powerful learning 
capability and through a simple training procedure, the 
neural network can automatically develop the highly 
complex and nonlinear relationships between input 
variables and output features of training data (Freeman 
and Skapura, 1992). Optimal performance of neural 
network depends on, adequate quantity of experimental 
data, optimized architectures and efficient and 
convergent learning algorithm for the specific problem 
under investigation. Under these conditions, it then 
becomes possible to generate satisfactory results when 
presented with any new input data it has never 
experienced before. Also it has been recommended that  
physical models should be used wherever possible to 
supplement neural network models (Sha and Edwards, 
2007). In the recent years, there has been increasing 
interest in neural network modeling in different fields 
of materials modeling (Mohanty et al., 2010; Toktas 
and Ozdemir, 2011; Mandal et al., 2009; Hou et al., 
2010), most of them used Multi-Layer Perceptron 
(MLP) networks to predict desire outputs. However, 
Radial Basis Function (RBF) has been described as 
potential alternative approach to replace MLP networks 
in many research areas because this network offers 
some advantages such as robustness to noisy data, 
compared with MLP (Fathi and Aghakouchak, 2007). 
They investigated crack in welded T-butt joints using 
four MLP networks under membrane and bending.

C
* = 1

B
dU

*

da
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Fig. 2: Integrated FEM and ANN framewor 

 

They concluded that the solution procedure and 

subsequently prediction by means of ANN are highly 

dependent on the quality and quantity of training 

database. Tapkin et al. (2009) successfully used 

Artificial Neural Networks (ANN) for the prediction of 

accumulated strain values obtained at the end of creep 

tests for Polypropylene (PP). Di Lorenzo et al. (2006) 

applied a combination of FEM and ANN to predict 

ductile fracture in cold forming operation. Talebi 

Anaraki et al. (2008) studied the relation between flow 

stress to strain, strain rate and the temperature for AZ61  

Mg alloy and applied artificial neural network for 

modeling the rheological behavior of the this alloy. 

They showed a good agreement between predicted 

results by ANN and the experimental data. Hwang et al. 

(2010) used three independent neural network models 

for predicting the mechanical properties of  rolled  steel.  

This artificial intelligent analysis process has improved 
the quality of steel bar manufactured and also reduced 
the running cost of steel company due to the failure of 
bar’s manufacture. 

The objective of this study is to establish fracture 
mechanics models based upon the various neural 
networks for predicting the C

*
 parameter. Firstly, a 

series of experiments was performed by varying the 
load and initial crack length. An axi-symmetric elastic-
creep, nonlinear analysis was performed by Finite 
element analysis for modeling the compact tension 
specimen, in a wide range of temperatures, forces and 
dimensions. After confirming the validity of the FEM 
model with experimental data, a collection of numerical 
and experimental data at 538, 550 and 594°C, 
respectively temperatures are employed to train the 
various neural networks models. These data was 
divided   into  three  parts:  training,  test and  validation  
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Table 1: Composition of the 1CrMoV rotor steel (% Wt) 

C Si Mn P S Cr Mo Ni V Al Cu Sn 

0.22 0.24 0.64 0.009 0.003 1.29 0.66 0.66 0.28 0.014 0.12 0.009 

 
subsets. The training and test sub-sample sets were used 
to develop the neural network model; the validation 
subset was used to evaluate the performance of the 
resulting model. The result shows that a combination of 
ANN and FEM simulation performs well in estimation 
of C*. The framework of the methodology used is 
presented in Fig. 2.  

 
EXPERIMENTS 

 
The material used was a low alloy steel: 1% Cr 1% 

MoV (1CrMoV) rotor steel supplied by Buderus  
Edelstahlwerke. This material has a grain size between 
14-34 mm and it was tested at 550°C. The material 
composition is shown in Table 1. The value of C* has 
been obtained from the load-point displacement rate 
following Eq. (6). Compact tension specimens were 
manufactured to the dimensions shown in Fig. 3. The 
experiments were carried out at constant load according 
to   the   recommendations  of  ASTM  E1457-01. The  
 

 
 

Fig. 3: Compact tension specimen used in the numerical 

analysis 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Crack extension versus time for different loads at 

550°C 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5:  Load line displacement versus time for different loads 

at 550°C 

 

loading conditions were chosen to give failure times in 

the range of approximately 600 to 1200 h. All the 

specimens were provided with side grooves which were 

10% deep  on  each  side.  The  side  grooves  were  not 

prepared until after a sharp fatigue crack had been 

introduced according ASTM standard E647-78T, at 

room temperature. In this way a flat straight fronted 

crack was produced prior to testing at elevated 

temperature. Extensometer was employed to monitor 

load point displacement in all the tests. A DC electrical 

potential method was used to measure crack growth in 

the specimens. With these techniques, it is estimated 

that crack extension could be recorded with an accuracy 

of ±0.1 mm using a linear calibration of voltage change 

taken between optical estimates of the initial a0 and 

final crack lengths. It is believed that this procedure is 

more reliable than the formula given in ASTM E1457-

01, for the test conditions used. The specimen was then 

heated to the required temperature. The loading was 

applied manually. The loading rate was kept to within 

one minute for the full load. The creep crack growth 

behavior of the 1CrMoV rotor steel at 550°C, obtained 

from tests on CT specimens and analyzed according to 

ASTM E1457-01, is shown in Fig. 4. As it can be seen 

little crack growth is experienced for the first 

approximately one-third of life. Also a crack extension 

of 0.5 mm is not observed until 80% of the life has been 

consumed. Examples of the load line deflection-time  

curves  obtained  for each test are presented in Fig. 5. 

  

NUMERICAL DETAILS 

 

The numerical evaluation was conducted on the 

same geometry and material as the experimental work. 

The specimen was of the compact tension geometry 

with specimen width, W = 50 mm and thickness, Bn = 6 
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Table 2: Creep properties (Norton uniaxial creep law)  

Temperature (°C) 538 550 594 

A 4.2E-27 1.3E-20 4E-21 

n 10.2 6.5 7.06 

 

 
Fig. 6: 2D mesh used in the FEM of the compact geometry 

 

mm. Calculations have been performed using elastic 

plus creep behavior and the creep response is described 

by Norton’s secondary creep law. The creep properties 

of the material used are given in Table 2. The elastic 

module is 165 Gpa, the Poisson ratio, 0.3. The analysis 

was conducted on specimens with stationary crack 

length under constant applied forces. Fifty five cases 

were calculated using seven different crack lengths, 

three creep temperatures and three loading conditions. 

The finite element code used was ABAQUS/standard. 

Initially a comparison between 3D model and 2D model 

(plane stress and plane strain) was made. Both plane 

stress and plane strain analyses have been carried out. It 

was found the error to be less than 2-3 percent for plane 

stress condition; hence, for reducing computational 

time, a 2D model was used. A CPS8R element (8 nodes 

biquardratic, reduced integration plane stress elements) 

was used as shown in Fig. 6. A convergence study 

(mesh sensitivity) was performed to establish an 

optimum mesh size. The number of elements and nodes 

were more than 400 and 1300 respectively. These 

numbers varied slightly with crack length.  

 

NEURAL NETWORKS 

 

In the past decades, numerous studies have been 

reported on the development of the neural networks 

based on different architectures (Fausett, 1994; 

Karayiannis and Venetsanopoulos, 1993; Zurada, 

1992). Basically, one can characterize neural networks 

by its important features, such as the architecture, the 

activation functions and the learning algorithm (Fausett, 

1994). Three neural networks are employed for 

modeling the fracture mechanics parameter in this 

study. 

 

• Hyperbolic Logistic sigmoid multi-layered learning 

perceptron with Resilient Back-Propagation 

algorithm (Resilient BP LOGMLP). 

 
 

Fig. 7: Architecture of the multi-layered perceptron networks 

 

• Hyperbolic Tangent sigmoid multi-layered learning 

perceptron with Resilient Back-Propagation 

algorithm (Resilient BP TANMLP). 

• Hyperbolic Tangent sigmoid multi-layered learning 

perceptron with adaptive learning rate (Adaptive 

TANMLP). 

 

Architectures: In Fig. 7 the architecture of the multi-

layered perceptron networks is shown schematically. 

The number of hidden layers is critical for the 

convergence rate at the training stage of the network 

parameters. In addition, hybrid-learning algorithm for 

identifying the quasi-optimal membership function and 

other rule-based parameters has also been employed in 

this study. It is shown that network with one hidden 

layers would be sufficient in the multi-layered 

perceptron networks and the number of neurons was 

determined by an optimization method. 

 

Activation function: For the neural networks shown in 

Fig. 7, the connections among the neurons are made by 

signal link designated by corresponding weighting. 

Each individual neuron represents an internal state, 

namely the activation, which is  functionally  dependent  

on the inputs. In general, the sigmoid functions(S-

shaped curves), such as logistic functions and 

hyperbolic tangent functions, are adopted for 

representing the activation. In this study several 

different functions for activation have been employed 

for comparisons. The activation function for the 

LOGMLP model is a continuous logistic function given 

as: 

 

te
tf λ−+
=

1

1
)(                 (8) 

 

where, 

λ= A slope parameter  

 

Similarly, the activation function for the TANMLP 

model is given as: 
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 where,  λ = A slope parameter, same as in Eq. (8) 
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Algorithms: At the stage of training the neural 

networks, it is critical to see an appropriate algorithm, 

because the efficiency and convergence of the training 

are primary issue at this stage. That means the 

algorithm is for determining the weightings in order to 

accomplish the desired mapping between the inputs and 

the outputs. Based on a least-square approach, the 

quadratic error function E between the actual outputs 

and the networks outputs is expressed by: 

 

2)(
2

1
pppp p YTEE −== ∑∑               (10) 

 

where,  

Tp = Target value and  

Yp = Outputs of neural networks 

 

In this study the delta learning rule (or namely the 

gradient descent) with momentum, the fast error back-

propagation learning algorithm for updating its 

parameters, have been used. Considering the 

convergence criteria, both the least-squares method and 

the back propagation gradient descent method have 

been employed for the nonlinear parameters, 

respectively.  

The performances of the networks were evaluated 

by the Root-mean-Square Error (RMS), which is 

defined as:  

 

∑ −=
p pp YT

n
RMSE 2)(

1                             (11) 

 

where,  

Tp  = The actual tangent vector (i.e., experimental 

values)  

Yp  =  The predicted vector (training values).  

 

As for the adaptive algorithm, the values of the 

learning coefficient have to be adequately increased 

when the RMSE of the current epoch is smaller than the 

RMSE of previous epoch. Otherwise, the values have to 

be adequately decreased when the RMSE of current 

epoch is larger than the RMSE of previous epoch. 

 

RESULTS AND DISCUSSIONS 
 

The value of C* has been obtained from the load-

point displacement rate following Eq. (6). At the 

beginning of the loading elastic, plastic and creep 

deformation processes are likely to occur. With a 

constant applied force the elastic and plastic 

deformations are assumed to remain constant but the 

creep deformation is constantly changing with time. 

The load-line creep displacement rate ∆� �  is calculated 

using: 

 
peTC ∆−∆−∆=∆ &&&&
                           (12) 

Table 3: Comparison of different training algorithms 

Function Technique Time Epochs 
Average training 
error (%) RMS 

Traingdx 
Variable 
learning rate 60 3600 4.200 2.7E-5 

Trainrp 
Resilient 
backpropagation 12 463 2.217 5.2E-7 

Trainbfg 
Bfgs quasi-
newton 10 44 8.400 5.8E-4 

Trainlm 
Levenberg-
Marquardt 1 6 12.750 9.6E-3 

 
Table 4: Data for training, testing and validating the network 

 a/w P(N) T(°C) 

C*exp  

(MJ/m2 h) 

C*num 

(MJ/m2 h) 

1  0.544 16200 538  2.4 E-05 

2  0.544 14100 538  2.12 E-06 

3*  0.544 20000 538  1.12E-04 

4  0.578 16200 538  6.98 E-05 

5  0.578 14100 538  7.12 E-06 

6  0.561 14100 538  3.49 E-06 

7  0.561 16200 538  4.17 E-05 

8  0.561 20000 538  1.97 E-04 

9  0.53 14100 538  3.89 E-06 

10*  0.53 16200 538  2.7 E-05 

11  0.505 14100 538  3.54 E-06 

12  0.505 16200 538  3.56 E-05 

13   0.55  16200 538  3.42E-05 

14   0.57  16200 538  5.61E-05 

15   0.544 16200 550  4.71E-05 

16  0.544 14100 550 2.49 E-06  

17  0.544 20000 550 1.66 E-04  

18  0.578 14100 550 3.63 E-05  

19  0.578 16200 550  1.51 E-04 

20  0.578 20000 550 2.96 E-05  

21  0.561 16200 550 1.11 E-04  

22  0.561 14100 550 1.64 E-05  

23  0.561 20000 550 2.92 E-04  

24  0.53 14100 550 3.34 E-06  

25  0.53 16200 550  3.21 E-05 

26  0.53 20000 550  1.14 E-04 

27  0.505 14100 550 2.34 E-06  

28**  0.505 16200 550  2.75 E-05 

29  0.505 20000 550 9.82 E-05  

30  0.55 14100 550  7.33E-06 

31  0.57 14100 550  2.61E-05 

32  0.55 16200 550  6.73E-05 

33  0.57 16200 550  1.53E-04 

34  0.57 20000 550  1.35E-04 

35  0.544 16200 594  7.55E-05 

36  0.544 14100 594  8.3 E-06 

37  0.544 20000 594  2.65 E-04 

38*  0.578 16200 594  1.73E-04 

39  0.578 14100 594  2.6 E-05 

40  0.578 20000 594  5.27 E-04 

41**  0.561 14100 594  2.62 E-05 

42  0.561 16200 594  1.36 E-04 

43  0.561 20000 594  3.76 E-04 

44  0.53 14100 594  5.88E-05 

45  0.53 16200 594  5.3 E-05 

46  0.53 20000 594  1.89 E-04 

47  0.505 14100 594  5.11 E-06 

48  0.505 16200 594  4.40 E-05 

49  0.505 20000 594  1.62 E-04 

50  0.55 14100 594  1.39E-05 

51  0.57 14100 594  2.52E-05 

52  0.55 20000 594  3.13E-04 

53  0.57 20000 594  4.89E-04 

54  0.55 16200 594  9.27E-05 

55  0.57 16200 594  1.48E-04 

*Used for testing the network; **Used for validating the network 
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where, ∆� �, ∆� �and ∆� � are the total, elastic and plastic 
displacement rates, respectively. Creep crack growth 
testing is normally carried out at loads where plastic 

deformation is insignificant and it is assumed that ∆� �≻

≻ ∆� �. Hence the creep strain rate can be calculated as 
(ASTM E1457-01, 2002): 
 

eTC ∆−∆=∆ &&&                (13) 
 
Figure 8 shows the comparison of experimental with 

numerical C*at 550°C, good agreement between the 

line integral C* value and that obtained from Eq. (6) 

has been observed. The numerical analyses were 

performed under steady state creep and plane stress 

conditions and it is assumed that crack growth is in the 

plane of the crack. After confirming the validity of the 

model, number of computational calculations  has  been 

preformed to obtain C* at 538°C and 594°C. These 

results together with experimental results were used to 

train the ANN as shown in Table 3.  

Based on experimental work, three inputs and one 

output in the networks was decided to be sufficient for 

this study as shown in Fig. 9. The ANN was designed 

and trained in MATLAB
TM

 environment. The 

calculations performed at each neuron are determined 

by an activation function, Eq. (8) and (9). The intensity 

of the signal passed between any two neurons depends 

on both the activation function and the weight of the 

connection. While connection weights will be modified 

during training of the network as observation patterns 

are passed along, activation functions are decided 

before the network training. The training process 

adjusts the weight of each neuron to an appropriate 

value. There are many available training algorithms  

such  as  Variable  Learning  Rate, Resilient back 

propagation, BFGS quasi-Newton and Levenberg-

Marquardt. Comparison of different training algorithms 

technique is shown in Table 4. As it can be seen, the 

best approach which performed minimum errors is the 

Resilient back propagation algorithm (Freeman and 

Skapura,   1992;   Fausett,  1994),  hence,  the  Resilient 

range   [-1, 1]   before    the   training   of   the   network  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8: Experimental and FEM Comparison at 550°C 

 
 

Fig. 9: A schematic of inputs and output 

 
Table 5: Comparison of C* values based upon the Adaptive TANMLP model 

with the number of hidden nodes as the variable 

Hidden layer 

nodes 6 7 8 9 10 

Epochs 5000 5000 5000 5000 5000 

RMS 3.848E-05 1.361E-05 3.050E-05 4.590E-05 7.923E-05 

Average 

training error 

(%) 

1.615 2.043 2.457 3.112 6.703 

Average 

checking 

error (%) 

5.174 2.459 3.158 7.662 5.634 

 
Table 6: Comparison of C* values based upon the Resilient BP LOGMLP 

model with the number of hidden nodes as the variable 

Hidden layer 

nodes 6 7 8 9 10 

Epochs 972 1129 651 2012 798 

RMS 1.864E-5 1.859E-5 1.861E-5 1.841E-5 1.825E-5 

Average 

training error 

(%) 

3.129 8.554 1.883 9.012 4.369 

Average 

checking error 

(%) 

5.235 1.185 3.843 4.657 6.032 

 
Table 7: Comparison of C* values based upon the Resilient BP TANMLP 

model with the number of hidden nodes as the variable 

First hidden 

layer nodes 6 7 8 9 10 

Epochs 2836 440 227 761 359 

RMS 9.358E-5 8.276E-6 3.957E-5 4.633E-7 2.341E-5 

Average 

training 

error (%) 

9.160 4.268 7.651 3.210 2.584 

Average 

checking 

error (%) 

3.780 5.947 4.143 1.215 6.954 

 

(Malinov et al., 2001). The normalized values (Xn) for 

each data set (di) were calculated as: 

 

1
)(2

minmax

min −
−

−
=

dd

dd
X i

n

                (14) 

 

where, dmax and dmin are the maximum and minimum 

values of raw data, respectively. For determining the 

optimal architecture, networks with different number of 

neurons in the hidden layer have been designed and 

tested as shown in Table 5-7, in these three tables, the 

prediction, the training and the check errors, are defined 

as: 

 

alExperiment

edictionalExperiment
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)Pr(
%

−
=              (15) 

 

The performance capability of each network has 

been   examined   based  on percentage average training  
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Table 8: Final comparisons of the results 

 Rp logmlp Adapte tanmlp Rp tanmlp 

Hidden layer nodes 8 7 9 

Epochs 651 5000 761 
RMS 1.861E-5 1.361E-05 4.633E-7 

Average training 

error (%) 1.883 2.043 3.210 
Average checking 

error (%) 3.843 2.459 1.215 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10: Overall comparison of results at 538˚C, 550˚C, and 

594˚C 

 

error and percentage average checking error. The 

number of hidden neurons has been changed in order to 

optimize the structure of neural network. Also, the 

number of neurons in the hidden layer increases the 

amounts of connections and weights to be fitted. If this 

number (connections) is larger than the number of the 

data pairs available for training, although the neural 

network can still be trained, the case is mathematically 

undetermined (Sha and Edwards, 2007). The minimum 

learning inputs is Vemuri and Rogers (1994): 
 

C = 1+
 (!����)

�
                                                   (16) 

 
where,  
C  = The minimum learning inputs 
N  = Neurons in hidden layer  
T  = Output parameters  
I  = Input parameters  
 
hence the number of neurons in hidden layer can be up 
to 10. By comparing the results, the number of neurons 
in the hidden layer was found to be 7 for the 
ADAPTIVE TANMLP model, 9 for the RP LOGMLP 
model and 8 for the RP TANMLP model. It is noted 
that the RP TANMLP model gives smaller check error 
than the others. Table 8 shows the final results for 
modeling the fracture mechanics parameter. From 
Table 8, it is identified that the RP TANMLP model 
with 9 neurons produced the best performance (3-9-1). 
The percentage average training error and percentage 
average checking error are 3.21 and 1.215% 
respectively. It would have been possible to optimize 
topology   of   the   neural network, by utilized multi-
objective genetic algorithms for training of the neural 

network. In this method the number of nodes in the 
hidden layer, the architecture of the network, the 
weights can be taken as variables and a Pareto front can 
be constructed by minimizing the training error along 
with the network size (Pettersson et al., 2007, 2009; 
Bhattacharya et al., 2009). The correlation between the 
predicted values of the optimum neural network model 
and the experimental data and finite element results for 
prediction of C* at 538°C, 550°C and 594°C are shown 
in Fig. 10. As it can be seen, the average error 
difference between experimental and ANN is 2%, while 
the number for experimental and FEM is 6%, which 
indicates the capability of ANN method. 
 

CONCLUSION 
 

In this study, creep crack growth behavior of low 

alloy steel was modeled by coupling experimental 

work, a non-linear fracture mechanics analysis based on 

a two dimensional finite elements and a neural network 

model. The neural network was used for prediction of 

C* at different temperatures. The finite element 

analysis data together with experimental data was used 

for training the various neural networks models. Based 

on the analysis of these results the following 

conclusions could be drawn: 

 

• Creep crack growth tests are costly and time 

consuming. The numerical evaluation of (C*), 

involves a lot of parameters, a subtle change of any 

parameter will constitute a new scenario and a new 

simulation is needed to explore its behaviors. With 

the FEM simulation, it is difficult, time consuming 

and not pragmatic to conduct all the simulation. To 

address these issues, a new approach has been 

developed, which combines the FEM and ANN. 

This combination helps to reduce the simulation 

time and make it possible to search for the optimal 

parameters. All the validation results show the 

estimation of ANN can achieve satisfactory level. 

• Three networks, namely the RP LOGMLP, 
ADAPTIVE TANMLP and the RP TANMLP have 
been trained and compared. It has been shown that 
the RP TANMLP model with one hidden layers of 
nine neurons produced the best performance (3-9-
1). 

• The average error difference between experimental 

and ANN is 2 %, while the number for 

experimental and FEM is 6%, which indicates the 

capability of ANN method.  
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