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Abstract: Magnetic Abrasive Finishing (MAF) is an advanced finishing process in which the cutting force is 
controlled by magnetic field and it provides a high level of surface finish and close tolerances for wide range of 
industrial application. In this study the parameter that affects surface roughness in MAF process on a brass shaft of 
CuZn37 have been examined experimentally. These parameters are: intensity of the magnetic field, work-piece 
velocity and finishing time. It has been shown that the intensity of magnetic field has the most effect on finishing 
process, a higher intensity in magnetic field, results in a higher change in surface roughness, increasing finishing 
time results in decreased surface roughness and a lower work-piece velocity leads to a lower surface roughness. 
Finally Artificial Neural Network (ANN) prediction of surface roughness are carried out and compared with 
experiment. It was found that the coefficient of multiple determinations (R2-value) between the experimental and 
ANN predicted data is equal to about 0.999, therefore, indicating the possibility of ANN as a strong tool in 
simulating and prediction of surface roughness in MAF process. 
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INTRODUCTION 

 
Magnetic abrasive finishing: Finishing is final 
operation involved in the manufacturing of components 
and is most labor intensive, time consuming and least 
controllable. The need of better finishing of 
complicated shapes made of advanced materials and 
high accuracy are the main factors responsible for using 
advanced abrasive fine finishing processes (Jain, 2002). 
MAF is an advanced finishing process in which the 
cutting force is primarily controlled by the magnetic 
field. It minimizes the possibility of microcracks on the 
surface of the workpiece, particularly in hard brittle 
material, due to low forces acting on abrasive particles 
(Jain, 2002). This process is able to produce surface 
roughness of nanometer range on flat surfaces as well 
as internal and external cylindrical surfaces (Jain et al., 
2001). The MAF process offers many advantages, such 
as self-sharpening, self-adaptability, controllability and 
the finishing tools require neither compensation nor 
dressing (Chang et al., 2002). In MAF, the workpiece is 
kept between the two poles of a magnet. The working 
gap between the workpiece and the magnet is filled 
with magnetic abrasive particles, composed of 
ferromagnetic particles and abrasive powder. Magnetic 
abrasive particles can be used as bonded or unbounded. 
In this process, usually ferromagnetic particles are 
sintered with fine abrasive particles (Al2O3, SiC, CBN, 
or diamond) and such particles are called ferromagnetic 
abrasive particles (Shinmura et al., 1986, 1990; Chang 
et al., 2002; Jain, 2009). Finishing pressure can be 

controlled via magnetic  field  applications (Shinmura 
et al., 1993; Chang et al., 2002). Workpiece materials 
can be magnetic (e.g., steel) or non-magnetic (e.g., 
ceramics) and the material removal weight can be 
adjusted based on the size of the magnetic abrasives. 
Thus, MAF is a multi functional precise finishing 
method one can use to obtain quality surface finishes 
efficiently (Lieh-Dai et al., 2007). Shinmura et al. 
(1985a, 1987 and 1990) found that intensity of 
magnetic field and working gap greatly affects the 
surface roughness and material removal. Also they have 
shown that material removal and surface roughness 
value increase as the magnetic abrasive particle 
diameter increases. Jain et al. (2001) studied finishing 
of the external surface of a cylindrical workpiece and 
found that the working gap and circumferential speed of 
the workpiece are the parameters which significantly 
influence material removal and the change in surface 
roughness value. Shinmura and Aizawa (1989a) and 
Shinmura et al. (1985b) observed that for a plane, 
increasing finishing time up to a certain limit would 
result in decrease of surface roughness, after that no 
further improvement was noticed. Jeong-Du and Min-
Seog (1995) modeled and simulated the MAF process 
for finishing cylindrical workpieces and concluded that 
the magnetic flux density increases as the air-gap length 
decreases. Jayswal et al. (2005) proposed a 
mathematical model for mechanics of material removal 
and a model for surface roughness during the MAF 
process. They developed a finite element code to 
evaluate the distribution of magnetic forces, 
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considering magnetic flux density, type and size of 
magnetic abrasive particles and the working gap as the 
main parameters. By considering the Gaussian 
distribution of the ordinates of the surface profile, (Jain 
et al., 2007) modeled and simulated the surface profile 
obtained after MAF. This model predicts center-line 
average surface roughness value Ra obtained after 
MAF. Literature survey indicates that there are little 
contributions toward the simulation of the magnetic 
abrasive finishing process. 
 
Artificial neural network: The ANN is a 

computational network that attempts to simulate the 

process that occurs in the human brain and nerves 

system during pattern recognition, information filtering 

and functional control (Hagan et al., 1996; Haykin, 

1999). It uses an inductive approach to generalize the 

input-output relationship to approximate the desired 

function; such specific capacity is helpful when the case 

is difficult to drive a mathematical model (Chan et al., 

2008). There has been a recent growing interest in 

applying Artificial Neural Network (ANN) to 

engineering fields for solving complex problems. The 

utilization of the neural network technology enables the 

behavior of complicated systems to be modeled and 

predicted based  on  known experimental data (Cheng 

et al., 2010; Tawakoli et al., 2009). Many investigators 

used the neural networks for prediction surface 

roughness parameters (El-Sonbaty et al., 2008; Abburi 

and Dixit, 2006). But on the other hand, there are no 

significant contributions about the employment of 

neural network solutions in modeling and simulation of 

MAF process. The objective of the present study was 

application of neural network solutions to predict 

surface roughness in magnetic abrasive finishing 

process. The effect of key parameters like intensity of  

the magnetic field, work-piece velocity and finishing 

time that affects performance of the process has been 

reported. 

 

MAGNETIC ABRASIVE PARTICLES AIDED 

FINISHING OF A CYLINDRICAL SHAFT 

 

Figure 1 and 2 shows the schematic view of the 

magnetic abrasive finishing and schematic of magnetic 

field distribution and magnetic force acting on a 

ferromagnetic particle respectively. The magnetic 

forces affect the ferromagnetic particles at position “A” 

outside the working gap as follows (Shinmura and 

Aizawa, 1989b): 
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where, 

x  = The direction of the line of magnetic force 

y = The direction of the magnetic equipotential line 

�� = Susceptibility of the ferromagnetic particles 

��  = Permeability of vacuum 

V = Volume of the ferromagnetic particles 

H  = The magnetic field strength at point “A” and 
��

��
  

and 
��

��
  are the gradients magnetic field strength 

in X and Y directions 

 

The magnetic forces represented in Eq. (1 and 2) 

not only concentrate the ferromagnetic particles in the 

working gap where magnetic field strength

 

 
 

Fig. 1: Schematic view of the magnetic abrasive finishing 
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Fig. 2: Schematic view of magnetic pole, part, abrasive and magnetic particles with field lines 

 

is superior, but also prevent the ferromagnetic particles 

from splashing due to workpiece rotation. The 

congregated ferromagnetic particles form a magnetic 

brush along the line of magnetic force within the 

working gap, which causes pressure P on the work 

surface. This pressure will act on the abrasive beneath 

the ferromagnetic particles, to generate abrasion. The 

abrasive cannot perform the cutting task unless it 

obtains abrasion pressure from the ferromagnetic 

particles. Eq. (3) represents pressure, P, as follows 

(Shinmura and Aizawa, 1989a): 

 

2/)]/11([ 2

0 mHP µµ −=                              (3) 

 

�� Is the relative permeability of ferromagnetic 

particles (Shinmura and Aizawa, 1989b). 
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�	 =  Specific permeability of iron constant   


� =  The relative percentage of iron (Shinmura and 

Aizawa, 1989b)  

 

During finishing, the forces acting on 

ferromagnetic particles near the work surface are in 

position “B” (Fig. 2). Due to the rotation of the 

workpiece, a cutting resistance, Rt, will act on the 

ferromagnetic particles in the tangential direction of the 

rotational motion. Moreover, due to the magnetic field 

strength gradients in the working gap, the ferromagnetic 

particles exerts a normal force, Rn, to the work surface, 

while simultaneously, a magnetic force, Fm, will act on 

the ferromagnetic particles in the anti-direction of Rt. 

Fm will prevent ferromagnetic particles from flowing or 

dispersing out of the working gap, which ensures that 

the finishing process will be successful. 

 

EXPERIMENTAL WORK 

 

Before starting experiment, the workpiece surface 

finish is measured. The working gap kept constant 

during the experimentation. The magnetic abrasive 

powder, which is prepared just before each test by 

adding the lubricant, is fed to the finishing zone. Then 

the current to the electromagnets is put on. A mixture of 

en-butanol and etil–alchol is added to ferromagnetic 

and abrasive particles to form conglomerate. The 

conglomeration helps the magnetic abrasive particle in 

staying in weak bounded condition in the working gap 

in the initial stage. This conglomeration increases 

effective working time of magnetic abrasive particle 

before replacement. Only those abrasive particles which 

are in direct contact with the rotating workpiece 

surface, remove material by shearing (Jain et al., 2001). 

It is suggested that due to blunting of abrasive particles, 

improvement in the surface finish becomes slow. Since 

the abrasive particles in contact with the workpiece 

surface wear out, the force required for cutting 

increases and it may exceed the holding force acting on 

the conglomerate (or the abrasive particles loosely held 

between the ferromagnetic particles). As a result, such 

abrasive particles are dragged outside of the magnetic 

zone. Also due to heat generated by friction between 

the abrasive particles and workpiece, lubricate 

bounding weakens and the particles fall out of the (Jain  
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Fig. 3: Experimental setup 

 
Table 1: Experiment conditions 

Work piece material Brass CuZn37 

Work piece dimension (mm) Ø22X 95 L 
Working Gap (mm) 1 

Work piece speed (m/s) 0.82-1.15 

Current (A) 1.7, 2 and 2.5 
Ferromagnetic particles weights (g) 5 

Ferromagnetic Particles hardness 

(kg/mm2) 

780 - 940 

Ferromagnetic Particles density 

(g/cm3) 

8.7 

Abrasive particles weight SiC (g) 4 
Abrasive particles hardness 

(kg/mm2)  

2800 

Abrasive particles density (g/cm3) 3.1 
Specimen rotational velocities (rpm) 1000 (1.15 m/sec), 710 (0.82 

m/sec) 

Test duration (min) 20, 30 
Number of specimen tested 12 

 

et al., 2001). When needed fresh supply of magnetic 
abrasive particle is constantly added to maintain its 
finishing efficiency. The general setup of experiment is 
shown in Fig. 3. Magnetically excited coils, around 
which copper wire of 0.7mm diameter was wound 750 
turns, produced the magnetic field. A fixture was 
designed and manufactured to fix the magnet to the lath 
machine. A cylindrical brass CuZn37 was used as 
workpiece. The unbonded magnetic abrasive applied is 
a mechanical mixture of ironic ferromagnetic particles 
and SiC abrasive with en-butanol as a cohesive between 
particles. Ferromagnetic particle mesh size of 220 and 
SiC with the mesh size of 200 has been used. Table 1 
presents the experimental conditions. A TR240 model 
Time Group Inc system machine with 8 mm measuring 

length (probe movement length) was used to measure 
the surface roughness (Ra).  

 

ARTIFICIAL NEURAL NETWORK 
 

For training of the ANNs the experimental results 
is used that are obtained from experimental work. The 
back-propagation learning algorithm is used in a feed-
forward, single hidden layer network. In the majority of 
neural networks no transfer function for input layer are 
considered, so neurons in input layer have no transfer 
function (Haykin, 1999). Tangent sigmoid (Tansig) 
transfer function is used as the activation function for 
the hidden layer. The transfer function used is presented 
in Eq. (5). The values of the training and test data were 
normalized to a range of (-1, 1). 
 

( ) 2(1 exp( 2 )) 1Tangsig z z= + − −                            (5) 

 
That z is the weighted sum of the input. Computer 

program has been performed for the ANN simulation 
and data pattern from experiments were used for the 
training of the network. Five numbers of available data 
were randomly selected and used as test data set. 
Statistical methods, Mean Square Error (MSE), Root-
Mean-Squared (RMS), Absolute fraction of variance 
(R

2
), coefficient of variation in percent (cov) values, 

were used for comparison. Error during the learning is 
called RMS and defined as follows: 
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Table 2: Statistical values of train process  

Neurons MSE RMS R2 cov 

3 0.011468 0.107089 0.99256 19.07876 

4 0.002869 0.053564 0.99638 9.542826 
5 8.88E-05 0.009421 0.999888 1.678503 

6 0.003304 0.057485 0.995828 10.24139 

7 0.006404 0.080023 0.991884 14.25679 
8 0.003226 0.056795 0.995928 10.11849 

9 0.000744 0.027276 0.999064 4.859539 

10 0.011311 0.106351 0.985574 18.94741 

 

In addition, R
2
 and coefficient of variation in 

percent (cov) are defined as follows, respectively: 
 

( )

( )

2

2

2
1

j j

j

j

j

t o

R
o

−

= −

 
 
 
 
 

∑

∑

                              (7) 

 

cov 100
mean

RMS
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where, 
t  = Target value 
o  = Output value  
p  = Pattern  
Omean = The mean value  of  all  output data (Bechtler 

et al., 2001). The performance of the network 

can be evaluated by the Mean Square Error 

(MSE), which is defined as: 
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Inputs and outputs are normalized in the (-1, 1) 

range as Eq. (10): 
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Variants of the algorithm used in the study are 

scaled conjugate gradient (SCG), Pola-Ribiere 

Conjugate Gradient (CGP) and Levenberg-Marquardt 

(LM). Statistical parameters that assessed the neural 

network are shown in Table 2. The coefficient of 

multiple determinations (R2-value) obtained for L-M 

algorithm is 0.999888 which is satisfactory. 

 

RESULTS AND DISCUSSION 

 
Results from experimental work: Effects of different 
process parameters (finishing time, magnetic field 
intensity and circumferential speed of the workpiece) 
on surface roughness are studied. Ra is defined as the 
difference between the surface finish value before MAF 
and after MAF. This Ra value is always found to be 
positive hence surface finish is improved in all cases. A  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Change in surface roughness with finishing time for 

circumferential speed of 0.82 m/s 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Change in surface roughness with finishing time for 

circumferential speed of 1.15 m/s 

 

small area was marked on workpiece for measuring 

initial surface finish before MAF and final surface 

finish after MAF. 

 

Effect of coil current and circumferential speed on 

surface roughness: Surface roughness variation for 

different finishing times for two different 

circumferential speeds of 0.82 and 1.15 m/s and three 

different coil current of 1.7, 2 and 2.5 a (magnetic force 

acting on  magnetic abrasive particles) are shown in 

Fig. 4 and 5. As the finishing time and coil current 

increases, magnetic abrasive brush is more engaged 

with the workpiece and micron chipping increases, 

hence the surface roughness improves and a higher 

material removal achieved. As it is evident, from the 

above figures up to certain period of time depending on 

current (i.e., finishing force) a high rate of change in 

surface roughness can be seen, after that no further 

improvement was noticed, this could be due to the fact 

that at the beginning of the process the abrasive particle 

are   much  sharper  than  towards  the  end  of  process.  
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Fig. 6: Change in surface roughness with coil current for 

finishing time of 30min at different workpiece 
velocities 

 
 
 
 
 
 
 
 
 

 
 
 
 
Fig. 7: Change in surface roughness with coil current for 

finishing time of 20 min at different workpiece 
velocities 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Fig. 8: Change in surface roughness with work piece velocity 

at different coil current for finishing time of 20 min 

 

Another reason can be, because as the time passes the 

number of abrasive particle decreases and little particles 

replace  would  occur,  hence   chipping   is   lower  and 

gradient of surface roughness decreases. Figure 4 and 5 

also, shows that at a specific time and coil current, there 

is higher change in surface roughness for higher 

workpiece   speed   (cutting  velocity)   than   the  lower  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9: Change in surface roughness with work piece velocity 

at different coil current for finishing time of 30 min 

 

workpiece speed. This is because the at higher 

workpiece speed number of the grains coming in 

contact with the workpiece increases.  

 

Effect of coil current and finishing time on surface 

roughness: Surface roughness variation for different 

coil current at two different finishing times is shown in 

Fig. 6 and 7. At low coil current due to lack of magnetic 

force, the change in surface roughness is low but, as the 

current of coil increases, the intensity of magnetic field 

(magnetic force acting on magnetic abrasive particles) 

increases and magnetic abrasive brush toughness 

increases (a higher force for holding particles in the 

direction of field) and can take deeper cuts to remove 

more amount of material from the workpiece so the 

variation of surface roughness increases. And so 

finishing improves. This effect will further escalate 

with the increase in finishing time and circumferential 

speed. Highest value of change in surface roughness is 

at coil current range of 1.7-2 A.  

 

Effect of coil current and finishing time on surface 

roughness: In general, material removal increases with 

increase in circumferential speed Fig. 8 and 9. As the 

workpiece speed increases, magnetic abrasive brush is 

more engaged with the workpiece and micron chipping 

increases, hence the surface roughness improves and a 

higher material removal achieved. 

 

Results of ANNs: The ANN was built and trained in 

MATLAB
TM

 environment. The back-propagation 

learning algorithm is used in a feed-forward, single 

hidden layer network (Hagan et al., 1996; Haykin, 

1999). Figure 10 shows the architecture of the ANN 

used for the surface roughness variation prediction. In 

this, the Coil current, finishing time and workpiece 

speed are  the  inputs  data  and  the  surface  roughness  
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Fig. 10: Architecture of the multi-layered perceptron networks 

 
Table 3: Statistical values of test process for surface roughness 

No D: NN D: EXP Error (ANN and EXP) % 

3 0.021145 0 .............. 

11 0.260245 0.28 7% 
23 0.343447 0.33 3% 

34 0.004228 0 ………….. 

 

variation is the actual outputs. Experimental data are 

used for training and testing the network. There is no 

strict rule for design of the ANN structure. However, 

the number of neurons in the hidden layers is critical to 

determine the complexity level of the function. In order 

to calculate the surface roughness, mathematical 

formulations can be derived from the resulting weights 

and the activation functions used in the ANN. As the 

regression coefficients obtained from both the training 

and testing of the ANNs were extremely good it is 

believed that the results thus obtained would be 

accurate. As expected the best approach which 

performed minimum errors is the LM algorithm with 5 

neurons (Haykin, 1999). Levenberg-Marquardt (LM) 

Back-Propagation training was repeatedly applied until 

satisfactory training is achieved. The configuration 3-5-

1 appeared to be the most optimal topology for this 

application. It would have also been possible to 

optimize topology of the neural network, by utilized 

multi-objective genetic algorithms for training of the 

neural network. In this method the number of nodes in 

the hidden layer, the architecture of the network, the 

weights can be taken as variables and a Pareto front can 

be constructed by minimizing the training error along 

with the network size (Pettersson et al., 2009; Sardinas 

et al., 2009; Bhattacharya et al., 2009). 

The regression curves of the output variable 

surface roughness variation for the test data set are 

shown in Fig. 4 to 8. It should be noted that some of the 

data were completely unknown to the network and it 

was used for testing the network. Table 3 shows the 

comparison of the ANN and Experimental results. 

Neurons in input layer have no transfer function. 

Tangent sigmoid transfer function has been used.  

1-))Eexp(-22/(1 )( iiEf ×+=                (11) 

 

where, Ei is the weighted sum of the input.  

It can be seen that for such neural network model, 

simulation results display a very good agreement with 

available experimental data for a wide range of 

operational parameters of MFA process. 

 

CONCLUSION 

 

Magnetic abrasive finishing, usually involves a 

number of process parameters, also little contributions 

has been made toward the simulation of the magnetic 

abrasive finishing process. In this study, the 

effectiveness of using neural network solutions for 

modeling and prediction of surface roughness variation 

in magnetic abrasive finishing process is comparatively 

evaluated. A Levenberg-Marquardt with Back-

Propagation algorithm was used to simulate the process. 

For such neural network model, simulation results 

display a very good agreement with available 

experimental data. 

From magnetic abrasive finishing process 

parameters considered in this study, the intensity of 

current which results the intensity of magnetic field 

(magnetic force acting on magnetic abrasive particles) 

has the most effect on finishing process. The best result 

obtained for surface roughness variation is the case of 

2.5 A and the velocity of 1.15m/s and the finishing time 

of 30 min, the variation in surface roughness is about 

0.52 micron.  
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