
Research Journal of Applied Sciences, Engineering and Technology 6(11): 1963-1969, 2013 

DOI:10.19026/rjaset.6.3810 

ISSN: 2040-7459; e-ISSN: 2040-7467 

© 2013 Maxwell Scientific Publication Corp. 

Submitted: December 14, 2012 Accepted: January 11, 2013 Published: July 25, 2013  

 

Corresponding Author: Zi-Li Deng, Department of Automation, Heilongjiang University, Harbin 150080, China, Tel.: 

13804583507 
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/). 

1963 

 

Research Article 
Covariance Intersection Kalman Fuser for Two-sensor System with  

Time-delayed Measurements 
 

1, 2
Peng Zhang and 

1
Zi-Li Deng 

1
Department of Automation, Heilongjiang University, Harbin 150080, China 

2
Department of Computer and Information Engineering, Harbin Deqiang College of Commerce, Harbin 

150025, China 
 

Abstract: For a two-sensor linear discrete time-invariant stochastic system with time-delayed measurements, by the 
measurement transformation method, an equivalent system without measurement delays is obtained and then using 
the Covariance Intersection (CI) fusion method, the covariance intersection steady-state Kalman fuser is presented. 
It can handle the estimation fusion problem between local estimation errors for the system with unknown cross-
covariances and avoid a large computed burden and computational complexity of cross-covariances. It is proved that 
its accuracy is higher than that of each local estimator and is lower than that of optimal Kalman fuser weighted by 
matrices with known cross-covariances. A Monte-Carlo simulation example shows the above accuracy relation and 
indicates that its actual accuracy is close to that of the Kalman fuser weighted by matrices, hence it has good 
performances. 
 
Keywords: Consistency, covariance intersection fusion, information fusion kalman fuser, time-delayed 
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INTRODUCTION 

 
Multisensor information has been applied to many 

fields, such as Guidance, defense, robotics, tracking, 
signal processing (Hall and Llinas, 1997; Li et al., 
2003; Bar-Shalom and Li, 2001). There are two kinds 
of optimal information fusion methods: the centralized 
and distributed information fusion, where the 
distributed weighted fusion method applies widely 
because of its less computational burden. Even if, to 
compute the optimal distributed weighted fusion 
Kalman estimators (Sun and Deng, 2004; Bar-Shalom 
and Campo, 1986), it is required to compute the cross-
covariances among local Kalman estimator errors, 
which needs a large computational burden, because 
these cross-covariances are generally unknown (Deng 
et al., 2008) or their computation is very complex (Sun 
and Deng, 2009; Sun et al., 2009; Liggins et al., 2009). 
In order to overcome this limitation, a Covariance 
Intersection (CI) fusion method was presented and 
developed in Julier and Uhlmann (1997), Chen et al. 
(2002), Julier and Uhlmann (1996), Julier and Uhlmann 
(2009) and Arambel et al. (2001), which can solve the 
fused filtering problems with unknown cross-
covariances and has the consistency and robustness 
(Julier and Uhlmann, 1997). It has wide applications 
(Julier  and Uhlmann, 2007; Guo et al., 2010; Bolzani 
et al., 2007). Besides that, the systems with time-

delayed measurement exist widely in control and 
estimation fields, which  results  that it is more difficult 
to compute the cross-covariances. Now there are 
augmented state method (Kailath et al., 2000) and non-
augmented state method (Sun and Deng, 2009; Zhang 
and Xie, 2007) to convert the system with time delays 
into that without time delays. 

In this study, for the two-sensor system with 

measurement delays, a measurement transformation 

approach is presented, by which the fused estimation 

problem is converted into that for systems without 

measurement delays (Sun and Deng, 2009; Sun et al., 

2009; Liggins et al., 2009). And, to overcome the 

difficulty and complexity of computing cross-

covariances, using the CI method (Julier and Uhlmann, 

1996, 1997, 2009; Chen et al., 2002; Guo et al., 2010; 

Bolzani et al., 2007), a CI fusion steady-state Kalman 

fuser is presented, which avoids to find the cross-

covariances and can reduce the computational burden. 

It can handle the system with unknown cross-

covariances and it has higher accuracy comparing with 

local estimators. It is rigorously proved that the 

accuracy of CI fuser is higher than that of each local 

filter and is lower than that of optimal fuser weighted 

by matrices. The CI fuser is consistent and the good 

performance. 
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PROBLEM FORMULATION 

 

Consider the two-sensor linear discrete time-

invariant stochastic system: 

                   (1) 

 

                 (2) 

 
where, t is the discrete time, τi is the measurement 
delay, ������� is the state, �	�����
�

 
is the 

measurement, w(t) ��
  and �	�����
�  are uncorrelated 
white noises with zero mean and variances Qw and ��	 , 

respectively. 
The objectives are to find the local steady-state 

optimal Kalman estimators ��	
���|�� + ��, (N<0, N = 0, 

N>0), i = 1, 2, the Kalman fusers ��

� ��|�� +

�, �����+�, �����+� weighted by matrices, diagonal 
matrices and scalars, the CI fusion Kalman fuser 
����

� ��|�� + �� and compare their accuracy relations. 

 
THE STEADY-STATE OPTIMAL  
WEIGHTED KALMAN FUSER 

 

Introducing the new measurement yi(t) and 
measurement noise vi(t): 

 

                     (3) 

 

                                        (4) 

 
From (2), we have the new measurement equation 

without measurement delays. 
 

                                      (5) 

 
where, the new measurement noise vi(t) is white noise 
with zero mean and variance Qvi = Qζi. 

Denoting the linear space spanned by the stochastic 
variables (zi (t+N), zi (t+N-1), …) as L (zi (t+N), zi (t+N-
1), …)

 
and the linear space spanned by the stochastic 

variables ( ( ), ( 1), )
i i i i

y t N y t Nτ τ+ − + − − L  as 

( ( ), ( 1), )
i i i i

L y t N y t Nτ τ+ − + − − L , we have the 

relation between the two linear measurement spaces as: 
 

                          (6) 

 
So we have the relation as: 

  

                      (7) 

 
where ��	��|� + � − �	

�� is the linear minimum variance 
filters of x(t) based on  (yi (t+N-τi), yi (t+N-1-τi), …) and 

��	
���|�� + �� is the linear minimum variance filters 

based on L(zi (t+N), zi (t+N-1), …). So the relation 

between the estimation errors ��	
���|�� + �� and ��	��|� +

��� is: 

  

                         (8) 

where, ��	
���|��  + �� =  ���� − ��	

���|�� + ��,  ��	��|� +
�=��−����+�. 

Defining the steady-state estimator error variances 
and cross-covariances are  		

� ��� =  !"�#	
���|�� +

����$  ��+�  and  ����=!�����+����$��+�, 
respectively. So we have obtained 

 

                 (9) 

 

where, Pij (N-τi, N-τj) = E"��	��|� + � − �	
���#	

%��|� +
�−�� 

From (7) we can see that the problem of finding the 
local steady-state optimal Kalman estimators �#	

���|� +
� based on the measurement (zi (t+N), zi (t+N-1), …) is 
converted t that of finding the optimal steady-state 
Kalman estimators ��	��|� + � − �	

�� based on the 
measurement (yi (t+N-τi), yi (t+N-τi-1), …),  For  N > τi, 
N = τi, N > τi 

, the estimators are called the smoothers, 
filters and predictors, respectively. 
 
Lemma 1: (Sun and Deng, 2009) For the two-sensor 
system (1) and (5), the local steady-state Kalman 
predictor ��	�� + 1|��� is given by: 
 

            (10) 

 
where, 
  

                         (11) 

 

                            (12) 

 
The prediction error variance matrix Σi satisfies the 

steady-state Riccati equation: 
 

     (13) 

 
and the cross-covariance matrix ∑ = !"��	�� +	(
1���$�+1� between local prediction errors satisfies the 
Lyapunov equation: 

 
              (14) 

 
The -ki steps steady-state Kalman predictor  

��	��|� + )	
�� is given by: 

 

           (15) 

 
The -ki steps Kalman prediction error variance 

*	�)	 , )	� = !"�#	��|� + )	
���#	

%��|� + )	
��+ and cross-

covariance Pij ()	 , )() = E,��	��|� + )	
���#	

%-�.�.� + )(
��/0 

are given by: 

( 1) ( ) ( )x t x t w tΦ Γ+ = +

( ) ( ) ( ), 1,2i i i iz t H x t t iτ ξ= − + =

( ) ( )
i i i

y t z t τ= +

( ) ( )i i iv t tξ τ= +

( ) ( ) ( ), 1,2i i iy t H x t v t i= + =

( ( ), ( 1), )

( ( ), ( 1), )

i i

i i i i

L z t N z t N

L y t N y t Nτ τ

+ + −

= + − + − −

L

L

ˆ ˆ( | ) ( | )z

i i ix t t N x t t N τ+ = + −

( | ) ( | ), 1, 2
z

i i ix t t N x t t N iτ+ = + − =% %

( ) ( , ), 1, 2z

ij ij i j
P N P N N iτ τ= − − =

ˆ ˆ( 1 | ) ( | 1) ( ), 1, 2
i pi i pi i

x t t x t t K y t iΨ+ = − + =

pi pi i
K HΨ Φ= −

1
( )pi i i i i i viK H H H QΦΣ ΣΤ Τ −= +

1( ) ]i i i i i i i vi i i wH H H Q H QΣ Φ Σ Σ Σ Σ Φ Γ ΓΤ Τ − Τ Τ= [ − + +

, , 1, 2,ij pi ij pj wQ i j i jΣ Ψ Σ Ψ Γ ΓΤ Τ= + = ≠

1ˆ ˆ( | ) ( 1 | ), 2ik

i i i i i i
x t t k x t k t k kΦ − −+ = + + + ≤ −
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                         (16) 

                 (17) 

 
The steady-state Kalman filter ��	��|��� is as following: 

 
              (18) 

 
where,  
 

                                                (19) 

 
                   (20) 

 
The corresponding steady-state Kalman filtering 

error variance *		 = !"�#	��|����#	
%��|���+ and cross-

covariance *	( = !"�#	��|����#	
%��|���+ are given by: 

  
                            (21) 

 
 

,                                                (22) 

 
The steady-state Kalman smoother ��	��|� + )	

��, 
(ki>0) is given by: 
 

            (23) 

 
where, 
 

                 (24) 

 
                  (25) 

 

The Kalman smoothing error variance *	�)	 , )	�  =
!"��	��|� + )	

���#	
%��|� + )	

��+  and cross-covariance  

*	(-)	 , )(/ = !,��	��|� + )	
���#	

%-�.� + )(
�/0 are given by: 

 

        (26) 

                                          

    (27) 

 

Lemma 2: (Sun and Deng, 2009) For the two-sensor 

system (1) and (5), the steady-state Kalman filtering 

error variance Pij()	 , )	) = E "��	��|� + )	
���#	

%��|� + )	
��+ 

and cross-covariance Pij ()	 , )() = E,��	-�.� +
)1��$��+)�, (ki = N-τi, kj = N- τi) are given by: 

Case 1: when ki = 0, kj = 0 
                             (28) 

 
                 (29) 

 
Case 2: when ki<0, kj<0  
 

                                         (30) 

 
                (31) 

 

            

(32) 

 

                 (33) 

 

                (34) 

 

             (35) 

 

                 (36) 

 
Case 3: when ki>0, kj>0   
 

     (37) 

 

        (38) 

        
Case 4: when ki<0, kj<0≥ 
 

                     (39) 
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Case 5: when ki≥0, kj<0 
 

        (40) 

 

Lemma 3: (Sun and Deng, 2004) For the two-sensor 

system (1) and (5), the optimal Kalman fuser weighted 

by matrices is given by: 

 

             (41) 

 

where the weighted matrix is given by: 
 

            (42) 

 
              (43) 

 
where, e

T
 = [In, In] and the fused error variance matrix  

Pm is given as: 
 

                                          (44) 

 
The optimal Kalman fuser ��2

���|� + ���  weighted 
by scalars is given by: 

 

             (45) 

 
where the optimal weighted coefficients a = [a1, a2]  is 
given as: 
 

                               (46) 

 
where,  
 

                                                              (47) 

 

                                     (48) 

 

The corresponding optimal fused estimation error 

variance Ps is given by: 

 

                                              (49) 

 

The optimal Kalman fuser ��3
���|�|� + ���� weighted 

by diagonal matrices is given by: 

 

              (50) 

where the optimal weighted diagonal matrices Aj is 

given as: 

 

,                                        (51) 

 

The component expression of ��(
� and ��3

� are given by: 

 

                (52) 

 

So the equation (50) is equivalent with: 

 

              (53) 

 

where the optimal weighted coefficient vector is: 

 

                    (54) 

 

where 43
% = "1 … 1+ and defining: 

  

                 (55) 

 

where *	(
66 is the (l, l)th diagonal component of Pij (ki, kj) 

and the optimal component fused error variance Pdl and 

the optimal fused error variance Pd are given by: 

 

              (56) 

 

THE STEADY-STATE CI KALMAN FUSER 

 

From the proposed interpretation, it is clear that the 

computation of getting the cross-covariances between 

local filtering is very complex and the computed burden 

is very large. So a CI fusion method was presented 

(Julier and Uhlmann, 1997; Chen et al., 2002). 

Consider a two-sensor system (1) (2) and (5), when 

P1 and P2 are known, but the cross-covariance P12 is 

unknown, the CI Kalman fuser without P12 is given by: 

 

               (57) 

 

where the CI fusion error variance matrix PCI is given 

by: 

 

                                           (58) 
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where, , ,  and 

the weighted coefficient 7�"0, 1+ and minimizes the 

performance index: 

 

             (59) 

 

where the notation  denotes the trace of matrix. The 

optimal weighting coefficient  can be solved by the 

gold section method or Fibonacci method (Julier and 

Uhlmann, 1996). 

 

THE CONSISTENCY AND ACCURACY  

OF CI KALMAN FUSER 

 

Theorem1: The actual CI fusion error variance matrix 

*9�� is given by: 

 

               (60) 

 

Proof: From (58), we can obtain *��"7*:
;: + *<

;:+ = =, 

which yields 

 

               (61) 

 

Subtracting (57) from (61), we get the actual CI 

fuser error: 

  

                (62) 

 

The actual CI fusion error variance *9�� =
!"�#����|� + ����#��

% ��|� + ���+, where  denotes the 

mathematical expectation,  denotes the transpose. 

Substituting (62) into *9�� yields that (60) holds. The 

proof is completed. 

 

Theorem 2: For local and fused Kalman filters, we have 

the accuracy relations: 

 

              (63) 

 

CI CI
P P≤

                                                              (64) 

 

                               (65) 

 

                                (66) 

 

Proof: from (41), ��

� ��|� + ��� is the Unbiased Linear 

Minimum Variance (ULMV) estimate of  based on 

the linear space >
 =  >
-��:
���|� + ���, ��<

���|� + ���/ 

spanned by -��:
���|� + ���, ��<

���|� + ���/. From (45), 

(50), (57), we have ��?
���|� + ���, �>
, @ = �, �, A=, �,  

which yields (63). It has been proven *BA= ≤ *BA=  and 

trPm≤trPd≤trPs≤trPi, = 1, 2 in the reference (Sun and 

Deng, 2004; Julier and Uhlmann, 1997; Chen et al., 

2002), so we have (64) and (65) hold. In the 

performance index (59), taking ω = 0, we have J =  trP2 

and  taking  ω = 1, we  have  J =  trP1. Hence the 

optimal weighting coefficient 7�"0, 1+ yields 

trPCI≤trP1≤trPCI≤trP2, i.e. trPCI≤ trPi, i = 1, 2. Taking 

trace operation for (63) and (64), we have (66) holds. 

The proof is completed. 

 

SIMULATION EXAMPLE 

 

Consider the tracking system with two-sensor and 

with time-delayed measurements: 

 

 

 

 

 

where, ������< is the state, zi(t) is the measurement 

with delays for sensor i, w(t) and ζi(t) are white noise 

with zero mean and variances Qw and Qζi, respectively. 

According to the corresponding transformation, we 

obtain the measurement yi(t) without time delays: 

 

 

 

where vi(t) =  ζi(t+τi) is the transformed measurement 

white noise with zero mean and variance Qvi = Qζi . Thus 

the problem of finding the local steady-state optimal 

Kalman smoother ��	
���|� + ���, �� = 1, 2�  based on the 

measurement zi(t) is converted into the problem of 

finding the local steady-state optimal Kalman filter 

��:��|��� and Kalman predictor ��<��|�� − 1� based on the 

new measurement yi(t), respectively. Further, applying 

the Kalman filtering method yields the  

steady-state optimal fusion Kalman smoothers ��

� �� +

1,  �����+1,  �����+1   weighted   by   matrices,  

 

 

 

Fig. 1:  The accuracy comparison of P1, P2, P0, Ps, PCI and *9�� 
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Fig. 2: The curves of MSEi(t)  

 

 
diagonal matrices and scalars and CI fused Kalman 
smoother ����

� ��|� + 1��. In simulation, we take 
 

 

 
In order to give a powerful geometric interpretation 

with respect to accuracy relations of local and fusers, 
the covariance ellipse for a covariance matrix P is 
defined as the locus of points {x: x

T
P

-1
x = c} where c is 

a constant. In the sequel, c = 1 will be assumed without 
loss of generality. It was proved (Julier and Uhlmann, 

1996) that Pa≤ Pb is equivalent to that the ellipse for Pa 

is enclosed in the ellipse for Pb. The simulation results 
are shown in Fig. 1. 

From Fig. 1, it is clearly shown that the covariance 
ellipse for Pm lies within the intersection of ellipses for  
P1 and P2, the ellipse for CI fused theoretical covariance  
PCI encloses the intersection region of ellipses for P1 and 
P2 

(Chen et al., 2002) and passes through the four points 
of intersection of ellipses for P1 and P2. The ellipse for 
CI fused actual covariance *9��  lies within the ellipse for 
theoretical covariance *9��  . 

In order to verify the above theoretical results for 
accuracy relation, 200 Monte-Carlo runs are performed 
for t = 1, …, 300 the results are shown in Fig. 2. 
where the straight lines denote trPi, i = 0, 1, 2, CI and 

tr CIP , the curves denote the corresponding mean square 

errors MSEi(t). We see the CI fuser has good 
performance, whose accuracy is approximates to the 
accuracy of the optimal smoother, because MSECI(t)  is 
approximates to MSEm(t). 

 
CONCLUSION 

 

For the two-sensor system with time-delayed 

measurements and with unknown cross-covariance 

matrices, a CI fusion steady-state Kalman fuser has 

been presented, which has the advantage that the 

computation of cross-covariances can be avoided. It is 

proved that its accuracy is higher than that of each local 

estimator and is lower than that of optimal fuser 

weighted by matrices. A two-sensor system Monte-

Carlo simulation example shows that its accuracy is 

approximates to the accuracy of the optimal fuser and is 

higher than those of the fusers weighted by diagonal 

matrices and scalars. 
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