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Abstract: Discrete Fractional Fourier Transform (DFRFT) has received lots of attention in last two decades because 
of its superior benefits and wide applications in various fields. In this study we present a comparative analysis of the 
most famous algorithms for the computation of DFRFT. Analysis is done on the parameters like time complexity, 
accuracy, consistency, basic mathematical properties and generalization of Discrete Fourier Transform (DFT) and 
approximation of continuous Fractional Fourier Transform (FRFT). Main objective of the research is to portray the 
major advantages and disadvantages of the previously proposed algorithms so that appropriate algorithm may be 
selected as per requirements. On the basis of study it has been observed that there exist several definitions and 
algorithm for computing the DFRFT. These algorithms are based on different techniques, such as eigenvectors, 
chirp convolution, spectral decomposition, non-Fresnel integral, or orthogonal projection. Each of these algorithms 
has its own advantages and disadvantages. Despite of these developments, we still feel that there has been dire need 
of a standard definition and computing method for accurate and efficient computation of DFRFT. 
 
Keywords: Computing algorithm, discrete fractional Fourier transform, Fourier transform, time-frequency 
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INTRODUCTION 

 
The Discrete Fourier Transform (DFT) has proved 

itself a powerful tool in various fields especially for 
signal processing and analysis. The Fractional Fourier 
Transform (FRFT) is a generalization of the Fourier 
transforms (Soo-Chang and Min-Hung, 2001). The 
FRFT was introduced in 1980. Since then, the FrFT has 
been a hot research topic because of its benefits and 
advantages. It is being used in various fields such as 
quantum mechanics, quantum optics, optical systems, 
signal and image processing, communication and 
solution of differential equations (Namias, 1980; 
Xingpeng et al., 2004). Fourier transform provides the 
signal’s spectral content, but it fails when we need the 
time location of the spectral components. Time-
frequency patterns are important in analysis of signals 
like non-stationary or time-varying signals. In order to 
analyze such signals, time-frequency representations are 
used. The FRFT has proved itself a powerful tool for the 
analysis of time-varying signals by representing rotation 
of a signal in time-frequency plane (David, 1999; 
Mendlovic and Ozaktas, 1993; Liying and Daming, 
2010; Alieva and Bastiaans, 2001; Soo-Chang and Man 
Hung, 1996). In various fields where Fourier Transform 
(FT) and frequency domain concepts are used, 
performance can be enhanced through the use of FRFT 
(Ozaktas et al., 1999). It has close relationship with some 
other transforms like Fourier, chirp, wavelet and linear  

canonical transforms (Soontorn, 2002; Rajiv and Kulbir, 
2005). Discrete counter part of FRFT, DFRFT has 
attracted lots of attention in last two decades. The 
DFRFT has been digitally computed using various 
approaches that can be classified as eigenvectors 
(decomposition)  based  (Çag˜atay et al., 2000; Ozaktas 
et al., 2001; Bultheel and Martinez-Sulbaran, 2004; Soo-
Chang et al., 2005; Bai, 2010), chirp convolution based 
(Ozaktas et al., 1996; Arikan et al., 1996), weighted 
summation based (Min-Hung, 2003), orthogonal 
projection based (Soo-Chang et al., 1999), computation 
algorithm with zooming-in ability (Zhao et al., 2008), 
spectral decomposition of kernel and linear combination-
type DFRFT methods, group theory and impulse train 
type derivations and so on. These definitions and 
computing methods have their own advantages and 
disadvantages, with respect to time complexity, 
accuracy, internal consistency, analytical elegance as that 
of DFT, generalization of DFT in the same sense as 
continuous FRFT generalizes to continuous ordinary 
Fourier transform, satisfaction of properties of 
continuous FRFT and recovery of signal from 
transformation (Atakishiyev et al., 1999; Cariolaro et al., 
2000; Soo-Chang and Min Hung, 1997) etc.  

In this study we present a comparative analysis of 

some famous definitions and computing methods of the 

DFRFT. So far, there does not exist any standard 

definition of DFRFT, as in the case of DFT. Thus, many 



 

 

Res. J. Appl. Sci. Eng. Technol., 6(11): 1911-1919, 2013 

 

1912 

authors claimed their proposed definition and computing 

method to be better than others. In such situation we have 

done a comparative analysis of some famous methods of 

the DFRFT including eigenvectors (decomposition) 

based computing method, chirp convolution based 

computing method, weighted summation based method, 

orthogonal projection based method, non-Fresnel integral 

based computing method etc. And the parameters like 

time complexity, accuracy, consistency, acceptability, 

generic properties, generalization of DFT and 

approximation of FRFT and recovery of signal from 

transformation have been evaluated and discussed.   

The study is organized as follows: “Preliminaries” 
introduces the fractional Fourier transform and its 
discrete counterpart DFRFT. In “Computing Methods 
for DFRFT” we discuss various computing methods of 
DFRFT. In “Analysis and Results” we have done 
analysis of some famous DFRFT computing methods. 
“Conclusion” provides the concluding remarks.  

 

PRELIMINARIES 
 

Fractional Fourier transforms: The FRFT was 
introduced in mathematical literature with the same 
notation in 1980. By studying the brief history and 
development of the FRFT, it seems that it was 
independently reinvented by a number of researchers. 
FRFT is the generalization of the classical Fourier 
transform. It depends on a parameter α, which is α= a 
π/2, as shown in Fig. 1 and can be interpreted as a 
rotation by an angle α in the time-frequency plane or it 
can also be defined as decomposition of the signal in 
terms of chirps. 

It is classified as a member of more general class of 
integral transformations known as quadratic complex 
exponential, so, it’s intrinsically complex to evaluate 
through analytical methods as well as numerical 
integrations. The main reason is that such operations 
require very high sampling rates which increased time 
complexity (Ozaktas et al., 1996). 

Mathematically, the FRFT can be defined by various 
ways; for example, through linear integral transform by 
specifying its linear transform kernel, by fractional 
power of ordinary Fourier transform through Hermite-
Gaussian functions which are eigenfunctions of Fourier 
transform, as a special one parameter subclass of the 
class of linear canonical transform as it represents 
rotation in the time-frequency plane, through coordinate 
multiplication and differentiation operators.  

However any definition of FRFT should obey the 
following three postulates to qualify (Bai, 2010): 

 

 It should be continuous for all real values of α.  

 Can be reduced to an ordinary order when α is an 
integer. 

 It should obey the additive property i.e., 

𝐹𝛼+𝛽[ 𝑓(𝑥)] =  𝐹𝛼[𝐹𝛽{𝑓(𝑥)}] =  𝐹𝛽[𝐹𝛼{𝑓(𝑥)}] 

 
 
Fig. 1: Real (blue) and imaginary (blue) parts of FRFT of 

rectangle function computed for different value of 

rotation angle α 

 

Below given is the most famous definition of FRFT. 

Hermite-Gaussian functions are considered as 

eigenfunctions  of  ordinary Fourier transform (Ozaktas 

et al., 1999, 1996). HereΨ(n )denotes the Hermite-

Gaussian functions and its value is: 

 

𝛹𝑛 (𝑥) =
21/4

√ 2𝑛𝑛! 
𝐻𝑛 (√2𝜋 𝑥) exp (−𝜋𝑥2)          (1) 

 

The αthorder continuous FRT can be defined 

(Çag˜atay et al., 2000) for interval 0 < | α | < 2 through 

its integral kernel: 

 

{Fα f} (𝑡α) = ∫ 𝐾𝛼 (𝑡α, t) f (t) 𝑑𝑡
∞

−∞
              (2) 

 

𝐾𝛼 (𝑡α, t) = 𝐾𝛷 𝑒
𝑗𝜋(𝑡2α𝑐𝑜𝑡𝛷−2𝑡α𝑡 csc 𝛷+𝑡2 𝑐𝑜𝑡𝛷)       (3) 

 

where  

 

𝐾𝛷 = 𝑒(−𝑗(
𝜋 𝑠𝑔𝑛(𝛷)

4
−

𝛷

2
))/|𝑠𝑖𝑛𝛷|0.5

  

 

and 

 

Φ = απ / 2 

 

The kernel in (3) has the following spectral 

expansion: 

 

𝐾𝛼 (𝑡α, t) = ∑ 𝛹𝑘 (𝑡α)∞
−∞ 𝑒−𝑗𝜋/2𝑘𝑎𝛹𝑘 (𝑡)               (4) 

 

where,  𝛹𝑘 (𝑡) denotes the kth Hermite-Gaussian 

function and 𝑡α denotes the variable in the αth-order 

fractional Fourier domain. This kernel maps the function 

into its fractional Fourier transform. As fractional 

Fourier transform is generalization of Fourier transform, 

when α = 1 in (2) it reduces to the ordinary Fourier 

transform (Çag˜atay et al., 2000). 
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Discrete fractional Fourier transform:  Santhanam 

and McClellan first reported the study on DFRFT in 

1995 (Rajiv and Kulbir, 2005). In 2000, Pei and Ding 

classified definitions of DFRFT according to the 

methodologies used for calculations (Pei and Ding, 2000; 

Soo-Chang and Jian-Jiun, 2000). DFRFT definitions can 

also be classified into various types like:  

 

 Simplest way to compute DFRFT is through the 

sampling of the continuous fractional Fourier 

transform, it is called direct form of DFRFT. But 

this definition has drawbacks like it does not obey 

some basic properties like unitary, additively, 

reversibility and closed-form properties 

 In improved sampling-type continuous FRFT is 

properly sampled to get the better results 

 DFRFT can also be computed using the linear 

combination of identity operator, DFT, time inverse 

operation and IDFT, that’s why this typed is called 

linear combination-type. Computed transform 

matrix is orthogonal, additive and reversible but it 

has drawbacks like the results do not match with the 

continuous FRFT 

 Eigenvector decomposition-type DFRFT can be 

computed through eigenvectors of the DFT matrix 

and fractional power of the DFT matrix. Results of 

DFRFT computed in this way are similar to the 

continuous FRFT; it also satisfies the basic 

properties likeorthogonality, additively and 

reversibility 

 Group theory-type DFRFT derived through the 

multiplication of DFT and periodic chirps. This 

definition satisfies the properties like rotational 

property of Wigner distribution, additively and the 

reversibility. This definition has its own limitations 

 Impulse train-type DFRFT is considered as a special 

case of continuous FRFT as the input function is 

taken as periodic and equally spaced impulse train. 

Biggest drawback of this approach is that it is could 

not be defined for all fractions. 

 

Here we take a definition which is in spirit of the 

definition in Eq. (4) (Ozaktas et al., 2001). Discrete 

fractional Fourier transform matrix𝑭𝒂 can be defined as 

the discrete analogue of Eq. (4): 

 

𝐹𝑙𝑙′
𝛼 = ∑𝑁

𝑛=0 ℎ𝑔𝑛𝑙𝑒
−

𝑖𝛼𝑛𝜋

2 ℎ𝑔𝑛𝑙′              (5) 

 

where, ℎ𝑔𝑛𝑙 is the 𝑙𝑡ℎ element of ℎ𝑔𝑛 and 𝐹𝑙𝑙′
𝛼 is the 

𝑙𝑙′𝑡ℎ element of Fα, with 0 ≤ 𝑙 ≤ N-1, 0 ≤𝑙′≤ N-1. From 

(5) it can be deduced that fractional Fourier transform of 

a vector 𝑓 is simply 𝑓𝑎 =𝐹𝑎 𝑓. The above given 

definition of discrete fractional Fourier transform fulfills 

the basic properties of FRT like unitarity, index 

additivity and reduction to ordinary transform when α = 

1 and approximation of continuous FRFT. It is clear from 

the above equation that discrete fractional Fourier 

transform can also be defined in relation with discrete 

Hermite-Gaussian and function can be expanded through 

discrete Hermite-Gaussian functions (Ozaktas et al., 

2001). Here ℎ𝑔𝑛denotes the discrete Hermite-Gaussian 

function. 

 

COMPUTING METHODS FOR DFRFT 

 

DFRFT is difficult to compute by direct sampling of 

continuous FRFT because the kernel function of the 

continuous FRFT exhibits drastic oscillation and the 

oscillation amplitude varies a lot for different order of 

FRFT (Qi-Wen et al., 2009). Such intrinsic complexities 

attracted numerous researchers to devise DFRFT 

computing algorithms. Such algorithms can be divided 

into two broad categories, fast FRFT algorithms and 

discrete FRFT algorithms. Most of the fast algorithms 

are FFT based. These fast algorithms can be further 

divided  into  two  types,  single  FFT based (Cariolario 

et al., 1998; Marinho and Bernardo, 1998) and (fast) 

convolution based (Xingpeng et al., 2004). 

In this section we will have deep analysis of some 

famous approaches devised by different authors, as it’s 

impossible to analyze all approaches here in this study. 

 

Eigenvectors based method:  Various authors adopted 

eigenvectors based algorithm for definition and 

computation of DFRFT (Soo-Chang and Man Hung, 

1996; Çag˜atay et al., 2000; Ozaktas et al., 2001; 

Bultheel and Martinez-Sulbaran, 2004; Soo-Chang et al., 

2005; Soo-Chang and Min Hung, 1997). Candan, Kutay 

and Ozaktas (Çag˜atay et al., 2000) proposed the 

definition which is based on a particular set of 

eigenvectors of DFT matrix which are said to be discrete 

counterpart of set of Hermite-Gaussian functions. The 

Hermite-Guassian functions are considered to be 

eigenfunctions of fractional Fourier transform, it can be 

inferred from this fact that the Hermite-Gaussian 

functions are eigenfunctions of the ordinary Fourier 

transform when α = 1 (Bultheel and Martinez-Sulbaran, 

2004) as shown in Fig. 2. This definition of the DFRFT 

generalizes the discrete Fourier transform in the same 

way that continuous fractional Fourier transform 

generalizes the ordinary continuous Fourier transform; 

furthermore the definition is unitary, index additive and 

reduces to DFT for unit order(Çag˜atay et al., 2000). 

Mathematically it can be computed as: 

 

𝐹𝛼[𝑚, 𝑛]= 𝑢𝑘[𝑚] ∑𝑁−1
𝑛=0 (𝜆𝑘)𝛼𝑢𝑘[𝑛]              (6) 

 

where, 𝑢𝑚[𝑛] is an arbitrary orthonormal eigenvector 

set of DFT matrix and 𝜆𝑘be the associated eigenvalues. 

We have to generate 𝐹𝛼matrix to compute discrete 

FRT, in order to generate 𝐹𝛼matrix following steps are 

required. First of all generate matrices Vand H. V is a 

matrix  that  decomposes an arbitrary vector f[n] into its  
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Fig. 2: The continuous Gauss-hermite functions (solid line) and 

the eigenvectors (o) of the discrete FRFT matrix 

 

even and odd components. It maps the even part of the 

𝑁-dimentional vector f[n] to the first (
𝑁

2
+ 1) 

components and odd part to the remaining components. 

Furthermore, 𝑉 matrix is both unitary and symmetric. H 

is a real symmetric matrix, it has tridiagonal structure 

and commutes with DFT matrix (Bradley and Kenneth, 

1982). 

Eigenvector set of H as well as DFT matrix is 

unique and orthogonal. H is a discrete counter part of 

continuous Hermite-Gaussian matrix. After finding V 

and H matrices, next step is to find Ev and Od matrices 

and find their eigenvectors 𝑒𝑘, 𝑜𝑘and eigenvalues. 

 

𝑉𝐻𝑉−1 = 𝑉𝐻𝑉 = [
𝐸𝑣 0
0 𝑂𝑑

]               (7) 

 

Since eigenvectors of the DFT matrix are either 

even or odd vectors (McClellan and Parks, 1972), so 

the eigenvectors of 𝑉𝐻𝑉−1 are also either even or odd 

vectors. Then sort these eigenvectors and values after it 

compute 𝑢2𝑘 = 𝑉[𝑒𝑘
𝑡|0 … 0]𝑇 and 𝑢2𝑘+1 =

 𝑉[0 … 0 |𝑜𝑘
𝑡]𝑇 through𝑒𝑘 , 𝑜𝑘 . Then 𝐹𝛼 is computed as 

defined in (6). In this method computation of 

eigenvectors takes the larger part of computation time. 

Total computation time complexity of this method is 

𝑂(𝑁2) whichis very high but the main advantages of 

this algorithm are accuracy, generalization and 

consistency. 

Pei and Hei (2000) and Soo-Chang and Man Hung 

(1996) proposed similar definition that is based upon 

the Eigen-decomposition of the DFT kernel matrix. 

After determining the eigenvalues of DFT kernel the 

transform kernel for DFRFT can easily be defined by 

taking fractional power of the eigenvalues. It gives 

similar transforms as those of continuous FRFT and it 

also holds properties like rotation etc. Computational 

complexity of this approach is 𝑂(𝑁2) (Soo-Chang and 

Min Hung, 1997), which is very high.  

 

Chirp  convolution  based method: The FRFT is 

closely related to the chirp function. Chirp based 

computation of DFRFT was proposed and elaborated by 

various authors (Xingpeng et al., 2004; Bultheel and 

Martinez-Sulbaran,  2004;  Ozaktas et al., 1996; Arikan 

et al., 1996). The FRFT is a member of more general 

class, i.e., linear canonical transform whose member can 

be broken down into succession of simpler operations. 

So Chirp based computation of DFRFT is based on the 

breakdown of FRFT into simple operations like chirp 

multiplication chirp convolution and again chirp 

multiplication. Mathematically, it can be written as 

Ozaktas et al. (1996): 

 

𝑔(𝑥) =  exp [−𝑖𝜋𝑥2 𝑡𝑎𝑛 (
𝛷

2
)] 𝑓(𝑥)              (8) 

 

𝑔′(𝑥) =  𝐴𝛷 ∫ exp[𝑖𝜋𝛽(𝑥 − 𝑥 ′)2] 𝑔(𝑥 ′)𝑑𝑥 ′∞

−∞
     (9)  

 

where 𝛽 = 𝑐𝑠𝑐𝛷 

 

𝑓𝛼(𝑥) = exp [−𝑖𝜋𝑥2 𝑡𝑎𝑛 (
𝛷

2
)] 𝑔′(𝑥)             (10) 

 

In Eq. (8-10), a signal f(x) is firstly multiplied by a 

chirp function. f(x)should be interpolated before this 

step. Then g(x) is convolved with chirp function, after 

that the result 𝑔′(𝑥) is multiplied by a chirp function 

again. This algorithm works for−1 < 𝛼 ≤ 1. If value of 

𝛼 is outside this interval different properties are used to 

compute the desired result. Before the computation of 

DFRFT the signal was interpolated, so at the end the 

resultant 𝑓𝛼(𝑥) will be subsampled as the result should 

have the same length as that of as that of original signal. 

The reason for expanding the signal and padding it with 

zeros was mainly because the convolution of signal 

should not be contaminated by boundary effects in the 

middle of the convolution signal. There exist various 

algorithms for interpolation and sub sampling of the 

signals.  

Equation (8-10) can also be written as Bultheel and 

Martinez-Sulbaran (2004). 
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𝑥2𝑐𝑜𝑡𝛼 − 2𝑥Ԑ𝑐𝑠𝑐𝛼 + Ԑ2𝑐𝑜𝑡𝛼 =  𝑥2(𝑐𝑜𝑡𝛼 − 𝑐𝑠𝑐𝛼) +
(𝑥 − Ԑ)2 𝑐𝑠𝑐𝛼 +  Ԑ2(𝑐𝑜𝑡𝛼 − 𝑐𝑠𝑐𝛼)                          (11) 

 

Eq. (11) is equivalent to Eq. (8-10), applying chirp 

convolution with sweep rate cscα between two chirp 

multiplications with sweep rate cotα.  

Definition proposed here satisfies the basic 

requirement of mapping from the samples of original 

function to the samples of the fractional Fourier 

transform. However in contrary to the ordinary DFT, 

this definition does not uniquely determine the discrete 

fractional Fourier transform, furthermore it is not 

exactly the fractional analog of Fast Fourier transform 

(FFT). It uses FFT techniques with complexity 

𝑁 𝑙𝑜𝑔 𝑁,it is a fast algorithm.The computational 

complexity of proposed method is𝑂(𝑁 𝑙𝑜𝑔 𝑁), which is 

reasonable. 

 

Orthogonal projection based method: In Soo-Chang 

et al. (1999), orthogonal projection based definition and 

method to compute DFRFT is proposed. It uses Hermite 

eigenvectors of DFT and retains the eigenvalue to 

eigenfunction relation as that of continuous FRFT: 

 

𝐴 =  Û
𝑇

𝑋                           (12) 

 

𝐹2𝛼/𝜋 =  Û𝐷2𝛼/𝜋Û
𝑇

𝑋 =  Û𝐷2𝛼/𝜋 𝐴            (13) 

 

=  ∑ 𝑎𝑘𝑒−𝑗𝑘𝛼 𝑁−1
𝑛=0 û𝑘                           (14) 

 

Here  𝐴 =  [𝑎0, 𝑎1, … … … . 𝑎𝑁−1]𝑇 , coefficients 𝑎𝑘
′ 𝑠 

arethe inner products of signal and eigenvectors, Û =
 [û

0
|û1| … … … |û𝑁−1]  for  odd  value  of  N and for 

even value of N its value is Û =
[û

0
|û1| … … … |û𝑁−2|û𝑁 and 𝐷 is a diagonal matrix 

having different values for even and odd length signal. 

It provides similar transform and rotational properties 

as those of continuous FRFT. Furthermore, it has the 

same relation to FRFT as that of DFT to continuous 

Fourier transform. It provides similar transforms and 

results as those of the continuous case. Moreover, it 

obeys unitary and rotation properties. The time 

complexity for implementing this algorithm is 𝑂(𝑁2), 

which is very high. 

 

Weighted summation method: The In this approach 

discrete fractional Fourier transform can be computed 

by weighted summation of DFRFT’s with special 

angels.Pei and Hei proposed separate methods for even 

and odd length signals (Soo-Chang and Min-Hung, 

2001; Min-Hung and Soo-Chang, 2003), whereas a 

generic form of this method valid for signals of any 

length, either even or odd, proposed in Min-Hung and 

Soo-Chang (2003).   

For a discrete signal x having odd length N with 

rotation angle α is computed as: 

 

 𝑋𝛼 =  ∑ 𝐵𝑛𝑋𝑛𝛽
𝑁−1
𝑛=0               (15) 

 

where β = 2π/N and weighted coefficients 𝐵𝑛 can be 

computed as: 

 

𝐵𝑛 = 𝐼𝐷𝐹𝑇{𝑒−𝑗𝑘𝑎} =
1

𝑁
∑ 𝑒−𝑗𝑘𝑎𝑁−1

𝑛=0 𝑒
𝑗2𝜋𝑛𝑘

𝑁        (16) 

 

Theweighting coefficients are computed from 

IDFT operation.  

For a signal x having even length: 

 

𝑋𝛼 =  ∑ 𝐵𝑛𝑋𝑛𝛽
𝑁
𝑛=0               (17) 

 

where, β = 2π/(N+1) and weighted coefficients 𝐵𝑛can 

be computed as 

 

𝐵𝑛 = 𝐼𝐷𝐹𝑇{𝑒−𝑗𝑘𝑎} =
1

𝑁+1
∑ 𝑒−𝑗𝑘𝑎𝑁

𝑛=0 𝑒
𝑗2𝜋𝑛𝑘

𝑁+1     (18) 

 
These The special angles are multiples of 2π/Nfor 

theodd case and are multiples of 2π/(N+1)for even 
length. The N-point and (N + 1) point IDFT is required 
for odd length and for even length signals respectively. 
In both cases an odd-point IDFT is computed to get the 
weighting coefficients. The popular FFT algorithm can 
only be applied while the length is power of 2; 
therefore, it cannot help us get the weighted 
coefficients. So weighting coefficients are obtained 
from an IDFT operation both for even and odd length 
signals. Computational complexity of this method 

is 𝑂(𝑁2), which is very high. Furthermore it requires 
(𝑁2) storage space. 
 

Non-Fresnel integral based method:  Now we discuss 

an alternative definition and method to compute discrete 

fractional Fourier transform. This approach does not 

require Fresnel integral. Eq. for definition of FRFT 

through this method can be written as Ozaktas et al. 

(1996): 
 

 {𝐹𝛼𝑓 }(𝑥) = 

 𝐴𝛷𝑒−𝑖𝜋𝑎𝑥2
∫ 𝑒−𝑖2𝜋𝛽𝑥𝑥′2

[𝑒𝑖𝜋𝑎𝑥′2
 𝑓(𝑥 ′)]𝑑𝑥 ′∞

−∞
     (19)  

 
where, α = cotΦ and β = cscΦ. 

Derived equation for computation of discrete 
fractional Fourier transform is as 

 

{𝐹𝛼𝑓 } (
𝑚

2∆𝑥
)  = (𝐴𝛷/2∆𝑥)  

∑ 𝑒
𝑖𝜋(𝑎(

𝑚

2∆𝑥
)2−2𝛽[

𝑚𝑛

(2∆𝑥)2]+𝑎(
𝑛

2∆𝑥
)

2
)
 𝑓(

𝑛

2∆𝑥
)𝑁

𝑛=−𝑁      (20) 

 

Eq. (20) gives us the samples of the fractional 

Fourier transform in terms of the original function. 
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Computation of discrete fractional Fourier transform 

using this equation has 𝑂(𝑁2) time complexity. It can 

be modified to reduce time complexity, as: 

 

{𝐹𝛼𝑓 }(𝑚/2∆𝑥)  = 

𝐴𝛷/2∆𝑥)𝑒𝑖𝜋(𝑎−𝛽)(
𝑚

2∆𝑥
)

2

    

             

∑ 𝑒𝑖𝜋𝛽(
(𝑚−𝑛)

2∆𝑥
)

2

𝑁
𝑛=−𝑁 𝑒𝑖𝜋(𝑎−𝛽)2

𝑓(
𝑛

2∆𝑥
)                  (21) 

 
In Eq. (21) we can see that it is convolution of 

𝑒𝑖𝜋𝛽(
(𝑚−𝑛)

2∆𝑥
)

2

 and chirp-modulated function. As we know 

that convolution can be in 𝑂(𝑁 𝑙𝑜𝑔 𝑁)time using FFT. 
So, the overall computational time complexity of this 

method is reduced to 𝑂(𝑁 𝑙𝑜𝑔 𝑁). This method maps 
the N samples of the original function to the N samples 
of the transform very accurately. But it does not fulfill 
properties like unitary and index additivity. 
 
Algorithm with zooming-in ability: One of the major 
disadvantages of chirp based algorithm and some of 
other famous algorithms discussed above is that, they 
can only calculate the entire fractional spectra with a 
fixed low resolution. In various applications such as the 
detection and estimation, this algorithm with fixed 
resolution cannot be used as it does not meet these 
requirements. Biggest advantage of this algorithm is that 
user can freely choose computational resolution and 
zoom in any interested portion of the fractional spectra. 
This ultimately improves estimation accuracy. 
Mathematically it can be defined as Zhao et al. (2008). 
 

𝑓𝑎,𝜆,𝑃[𝑚] = =

(
𝐴𝛷

2 N
) 𝑒𝑗𝜋(𝑎𝑁)(𝜆)2

𝑒
𝑗𝛼𝜆𝑚𝜋

𝑃 𝑒
𝑗𝜋(𝑎−𝑃𝛽)𝑚2

4𝑁𝑃2 ×

 ∑ 𝑒
𝑗𝜋𝛽(𝑚−𝑛)2

4𝑃𝑁𝑁
𝑛=−𝑁  [𝑒

𝑗𝜋(𝑃𝑎−𝛽)𝑛2

4𝑃𝑁
𝑒−𝑗𝜋𝛽𝜆𝑁

f [m] ]  (22) 

 

In (22), λ is the shift factor having value λ =
𝑥𝑖

∆x 
, -0.5 

≤ λ ≤ 0.5, it is used for relative location of 𝑥𝑖 in entire 

spectra interval [−
∆𝑥

2
,

∆𝑥

2
 ] and P is a zoom factor, its 

value is 𝑃 =  
1

(∆𝐼 2∆𝑥)
 , actually it’s the measurement of 

the ratio of the standard sampling 1/((2∆x)) to the 
calculated space ∆I. Eq. (22) works for range 0.5 ≤ |α| ≤ 
1.5. By using index additivity property of FRFT the 

properties like 𝐹𝛼 =  𝐹−1𝐹1+𝑝and 𝐹𝛼 =  𝐹1𝐹𝑝−1, it 
can be extended to all values of α. Time complexity of 
this algorithm is same as that of chirp convolution 
based algorithm is 𝑂(𝑁 𝑙𝑜𝑔 𝑁). Main advantage of this 
approach is that it offers the fine evaluation of structure 
of the partial spectra which ultimately improves 
estimation accuracy. Furthermore this algorithm 
provides flexible and efficient analysis of the fractional 
spectra. 

Discrete Fourier transform based method: This 

definition of FRFT is the enhanced version of Shih's 

definition (Shih, 1995). Proposed algorithm for 

computing DFRFT is derived from the FFT and is based 

on the periodicity of the eigenvalues of the FRFT (Bai, 

2010). This definition may also be generalized to 

compute two-dimension DFRFT, by which the 

fractional order spectrum of the digital images may be 

obtained. 

Shih proposed the definition of the FRFT which is 

based on the fact that the FRFT is a weighted 

composition of the jth order Fourier transforms of the 

original function, where (j =0, 1, 2, 3). This definition 

is based on the inference that the DFRFT is a weighted 

composition of the first four orders of the DFT. 

Mathematically it can be expressed as: 

 

 𝐹𝛼[𝑓(𝑛)] = 

∑ exp (−
𝑖3𝜋(𝑎−𝑚)

4
) cos (

𝜋(𝑎−𝑚)

2
) ×3

𝑚=0

cos (
𝜋(𝑎−𝑚)

4
) 𝑓𝑚(𝑘)               (23) 

 

where 𝑓𝑚(𝑘) is the mth order of the DFT of the original 

sequence 𝑓(𝑛), for m = 0,1,2,3, here DFT can be 

computing through use of FFT in an efficient way. 

Computational complexity of this algorithm is 

𝑂(𝑁 𝑙𝑜𝑔 𝑁), which is very reasonable. 

 

ANALYSIS AND RESULTS 

 

General behavior and properties: It is believed that 

FRFT is richer in theory and more flexible in application, 

but it is expensive in implementation. Here in this section 

DFRFT of a rectangle signal is computed using the 

above mentioned approaches with different values of 

transform order, α. 

In Fig. 3, the FRFT is computed with eigenvectors 

based approach. General properties of this approach are 

accuracy, generalization of DFT and consistency. It is 

clear from Fig. 3 that the FRFT value is equal to ordinary 

DFT for α = 1 and original signal is recovered for α = 2. 

Although eigenvectors based method has similar results 

as those of continuous FRFT, but it requires complex 

matrix calculations and its physical explanation is not 

explicit enough. In this method signals may be recovered 

from their transforms with errors (Bai, 2010). 

In Fig. 4, the FRFT is computed using the chirp 

convolution based approach. The FRFT is equal to the 

ordinary DFT for α=1 and original signal is recovered for 

α = 2. Other graphs show the value of the FRFT for 

different values of α. It satisfies the basic requirement of 

mapping from the samples of original function to the 

samples of the fractional Fourier transform’s his 

approach has a major drawback that this algorithm can 

only  calculate  the  entire  fractional  spectra with a fixed  
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Fig. 3a: Rectangle function data. Magnitudes of its fractional 

Fourier transform computed through eigenvectors 
based approach for (b) α = 0.25, (c) α = 0.50, (d) α = 
0.75, (e) α = 1.0 and (f) α = 2.0 same as original 
function 

 

 
 
Fig. 4a: Rectangle function data. Magnitudes of its fractional 

Fourier transform computed through chirp 
convolution based approach for (b) α = 0.25, (c) α = 
0.50, (d) α = 0.75, (e) α = 1.0 and (f) α = 2.0 same as 
original function 

 

 
 
Fig. 5a: Rectangle function data. Magnitudes of its fractional 

Fourier transform computed through orthogonal 
projection based approach for (b) α = 0.25, (c) α = 
0.50, (d) α = 0.75, (e) α = 1.0 and (f) α = 2.0 same as 
original function 

 
 
Fig. 6a: Ordinary DFT of rectangle function computed 

through fftw. Magnitudes of fractional Fourier 

transforms computed through (b) Eigenvectors based 

approach, (c) Chirp convolution based approach and 

(d) Orthogonal projection based approach 

 

low resolution. It means that for an N-point input sample, 

the outputs of the above algorithms are N-point 

uniformly spaced samples over the entire fractional 

spectra, resulting in the fixed resolution computation.  

Because of this limitation these algorithms cannot be 

used in many applications such as detection and 

estimation, zooming etc (Zhao et al., 2008). Furthermore, 

this algorithm works for −1 < 𝛼 ≤ 1. If value of 𝛼 is 

outside this interval different properties like {𝐹2 𝑓}(𝑥) =
𝑓(−𝑥) and {𝐹4 𝑓}(𝑥) = 𝑓(𝑥) to compute the desired 

result. 

In Fig. 5, the FRFT is computed using orthogonal 

projection based approach. It provides similar transforms 

and results as those of the continuous case. Original 

signal is recovered for α = 2. One drawback of such 

numerical integration based FRFT methods is that they 

do not obey rotation rules and the signal cannot be 

recovered from its inverse transform (Soo-Chang et al., 

1999). 

Most of the algorithms discussed above couldn’t 

provide the zoom function, it’s only the zooming-in 

based algorithm which provides this functionality 

furthermore it offers the fine evaluation of structure of 

the partial spectra which ultimately improves estimation 

accuracy. 

 

Reduction to ordinary Fourier transforms:  One of 

the important properties of fractional Fourier transform 

is that it should reduce to ordinary DFT for α = 1. Figure 

6 shows the behavior of different approaches in this 

regard. It is clear from Fig. 6 that almost all the 

approaches mentioned above produce the same result as 

that of ordinary DFT for α = 1, however eigenvectors 

based approach and chirp convolution based approach 

produces better results as compared to orthogonal 

projection based approach.  



 

 

Res. J. Appl. Sci. Eng. Technol., 6(11): 1911-1919, 2013 

 

1918 

 
 
Fig. 7: Computation time of DFRFT 

 

Computation time:  Computation time complexity is an 

important factor in comparative analysis of various 

approaches used for computation of FRFT.  

Different approaches have different time 

complexity Generally eigenvectors based approach, 

weighted summation based approach and orthogonal 

projection based approach have 𝑂(𝑁2) 

whereascomputational time complexity of chirp 

convolution based is O(N log N). However in some 

scenarios chirp based methods are not preferred, as they 

need coordinate scaling which requires double 

interpolation which in result requires extra computation 

power (Ozaktas et al., 1996; Yongun et al., 2004). Time 

taken for computation of DFRFT of a chirp signal of 

different length through different approaches is 

represented through graph in Fig. 7. It is clear from the 

figure that time taken by chirp convolution based 

approach is very less as compared to time taken by 

eigenvectors based as well as orthogonal projection 

based approach. In this experiment DFRFT of a chirp 

signal is computed. In weighted summation based 

generic method although the computational complexity 

is 𝑂(𝑁2), however when length of signal is in power of 

2, then weighted coefficients for angular decomposition 

can be computed in fast way through FFT. 

 

CONCLUSION 

 

In this study we have presented critical review and 

comparative analysis of some important existing 

approaches available for computation of discrete 

fractional Fourier transform. Comparison is done on the 

basis of parameters such as computation complexity, 

accuracy and consistency, generalization of DFT and 

approximation of continuous FRFT. We have taken 

different types of simulated data and processed it through 

implementation of above mentioned methods. Processing 

results indicate that all above mentioned definitions can 

be reduced to ordinary DFT for α = 1. It is also observed 

that none of the methods fulfill all the basic properties. 

Eigenvectors based definition and orthogonal projection 

based method correctly approximate the continuous 

FRFT, whereas these two methods take huge time for 

computation of DFRFT as compared to chirp 

convolution based method. 
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