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Abstract: Based on the factor graph framework, we derived a Modified Nonparametric Message Passing Algorithm 
(MNMPA) for soft iterative channel estimation in a Low Density Parity-Check (LDPC) coded Bit-Interleaved 
Coded Modulation (BICM) system. The algorithm combines ideas from Particle Filtering (PF) with popular factor 
graph techniques. A Markov Chain Monte Carlo (MCMC) move step is added after typical sequential Important 
Sampling (SIS) -resampling to prevent particle impoverishment and to improve channel estimation precision. To 
reduce complexity, a new max-sum rule for updating particle based messages is reformulated and two proper update 
schedules are designed. Simulation results illustrate the effectiveness of MNMPA and its comparison with other 
sum-product algorithms in a Gaussian or non-Gaussian noise environment. We also studied the effect of the particle 
number, pilot symbol spacing and different schedules on BER performance. 
 
Keywords: Channel estimation, Markov Chain Monte Carlo (MCMC), max-sum rule, message passing algorithm 

 
INTRODUCTION 

 
The two main Message Passing Algorithms (MPA), 

sum-product algorithm and max-product algorithm, are 
originally operated on Factor Graphs (FG) for iterative 
decoding of LDPC code (Wiberg, 1996). And the latter 
one is presented to further reduce complexity. In the past 
decade, this graphical approach has been introduced 
(Loeliger, 2004) and extended to solve other inference 
problems in communications, such as turbo equalization 
(Guo  and  Ping,  2008),  multi-user  detection (Bickson 
et al., 2008) and joint iterative channel estimation and 
decoding (Niu et al., 2005; Simoens and Moeneclaey, 
2006; Zhu et al., 2009; Guo and Huang, 2010). FG and 
MPA have been proven to be powerful tools both for 
disclosing a unified framework behind existing iterative 
receiver algorithms and designing new low-complexity 
ones to achieve near optimal performance.  

In a general continuous stochastic inference 
problem, the messages passed on FG are usually 
continuous functions making their analytical 
computation impossible or very complicated. Applying 
FG to the models with continuous variables remains a 
challenging task. In some special cases, all relations 
between variables are conditionally linear and all noises 
are Gaussian which results in a Gaussian or mixture 
Gaussian local functions. In these cases, MPA is 
reduced to an algorithm which only computes and 
updates the distributions' parameters, so we name it 
Parametric MPA (PMPA). The PMPA has been 

presented (Niu et al., 2005; Simoens and Moeneclaey, 
2006; Zhu et al., 2009) and gives accurate iterative 
channel estimation by approximating the SISO or 
MIMO flat fading channel as the First-Order 
Autoregressive (AR (1)) process. Due to the forward 
and backward messages updating, this PMPA actually 
amounts to the famous Kalman smoothing algorithm. 
Another case is the Gaussian Message Passing (GMP) 
algorithm (Guo and Huang, 2010) which is better than 
unidirectional filtering for double selective channel. 

However, in a practical scenario, the state-space 
model is usually non-Gaussian on account of the non-
Gaussian measurement noise. The estimation accuracy 
of classical algorithms such as Kalman filter and 
extended Kalman filter decreases significantly and even 
appears to have a divergent phenomenon. As an 
alternative to the Gaussian approximation mentioned 
above, PF has advantages in inference in nonlinear and 
non Gaussian state-space models and can be interpreted 
as a message passing algorithm (Dauwels et al., 2006). 
These advantages encourage us to combine PF with 
MPA (Loeliger et al., 2007) to derive new efficient 
estimation and detection algorithms. Several methods 
have been proposed to represent distributions as a list of 
samples and update sample-based messages instead of 
parametric messages (Tienda-Luna et al., 2005; Guo and 
Hu, 2009; Duan et al., 2011). This algorithm is called 
Nonparametric Message Passing Algorithm (NMPA). A 
simplified NMPA (Tienda-Luna et al., 2005) for 
iterative decoding over channels with phase noise is 
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derived with the mode or mean of particles at the 
expense of performance degrade at high SNR. A list of 
samples is utilized to accurately estimate Channel State 
Information (CSI) in un-coded systems (Guo and Hu, 
2009) and coded systems (Duan et al., 2011), 
respectively. It is worth noting that these NMPAs only 
concentrates on the combination of typical PF and sum-
product algorithm and have not addressed the affections 
of particle impoverishment, message update rule and 
schedule on performance and complexity. In addition, 
the model mismatch between AR (1) model and the 
actual simulated channel have not been an area of focus. 

In this study, we considered 16-QAM BICM-ID 
system with Modified Set Partitioning (MSP) labeling, 
LDPC code and non-Gaussian measurement noise and 
describe factor graph representation for system models. 
To avert particle impoverishment and further improve 
the precision of channel estimation of our previous 
NMPA (Duan et al., 2011), we proposed modified 
NMPA to incorporate MCMC re-sampling with typical 
PF and applying Metropolis Hastings (MH) algorithm to 
construct the transition kernel. And we reformulate 
particle based max-sum message update rule and design 
two types of selective message update schedules to 
spend less time on computation but also to unify the 
message update rule in max-sum type. Simulation 
results show that performance of the proposed algorithm 
is better than PMPA and other NMPAs. 

 

INFERENCE IN FACTOR GRAPH  

BASED MODELS 
 

System model: At the discrete transmitter, an 

information bit sequence b = {bj} is first encoded by a 

rate-R LDPC code and bit-wise interleaved. The 

interleaved bits are grouped into di = [di1, di2, …, dim] 

and mapped into complex data symbol xs = {xi } which 

is chosen from M-ary constellation χ, m = log2 M. L pilot 

symbols xp are inserted into data symbols periodically 

and K is referred to as pilot symbol spacing.  

Assuming that the correlated fading channel model 

is a zero mean, one unit variance complex Gaussian 

process and following Jakes’ isotropic scattering, we 

know that the autocorrelation function of hi is expressed 

as:  
 

Rh [i] = J0 (2πfdTsi) 

 

where,  

fd : The relative Doppler spread between transmitter 

and receiver  

Ts : The symbol period 

 

The low-order auto-regressive model can capture most 

of the channel dynamics, so the fading channel is 

approximated with a first-order AR model (Wang and 

Chang, 1996). hi varies according to (1), where α = J0 

(2πfdTs) and E (|hi|2) = 1. The noise v (i) is a zero-mean 

complex Gaussian process with a covariance σ2 = 1-|α|2 

and is statistically independent of h (i-1):  

 

h (i) = αh (i-1) + v (i)                               (1) 

 

At the receiver, the discrete-time baseband signal is 

written as:  

 

 yi = xihi + ni , i = 1, 2,…. N + L                             (2) 

 

It is assumed that ni are independent of the symbol 

sequence and the independent and identically 

distributed (i.i.d.) random variables which follow two 

type distributions respectively. One is a complex 

Gaussian distribution: 

 

ni ~ N (0, σ2)                                                         (3) 

 

where σ2 is the noise variance. The other is a two term 

Gaussian mixture distribution: 

 

ni ~ (1-ε) N (0, σ2
1) + εN (0, kσ2

1)                        (4)
 

 

where, 0<ε<1, k<1, the term N (0, σ1
2) represents the 

nominal ambient noise and the term N (0, kσ1
2) 

represents an impulsive component. As an 

approximation to the more fundamental Middleton Class 

A noise model (Middleton, 1999), it has been used 

extensively to model physical noise arising in radio and 

acoustic channels. 

 

Factor graph based representation and inference: 

The system is modeled by a Conditionally Gaussian 

Linear State-Space Model (CGLSM ) in (1) (2) and (3) 

and by a non-Gaussian model in (1) (2) and (4). The 

detailed dependence structure at the receiver has been 

presented in Fig. 1 following the factorization as in: 
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The function node Thi and Tyi stand for function p 

(hi|hi-1) and p (yi|xp, hi), respectively. Tmi = I {xi  = Q (di)} 

is the constellation mapping. P denotes code pilot 

constraint. For any node, μA→ B and LA→ B denote the 

message that flows from node A to node B in the 

probability domain and the log probability domain, 

respectively.  

The upper part represents the Channel Estimator 

(CE) and the lower part represents the Iterative Decoder 

(ID) which covers the decoder, interleaver and 

demodulator. We have designed a factor graph based 

receiver (Duan et al., 2011) following the criterion: 
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Fig. 1: (a) Factor graph representation of iterative receiver, (b) factor graph representation of decoder for LDPC (12, 3, 6)   
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i

i i N L
b

b p b y                              (6) 

 

The messages are computed by sum-product rule 

(Loeliger, 2004) with a particle list and are exchanged 

between the two parts based on turbo principle. CE 

outputs the channel message μTyi→xi downward to ID and 

ID updates the message μxi→Tyi of symbols upward into 

CE. This turbo iteration is named outer iteration. The 

iteration in ID itself is named inner iteration. A basic 

schedule (Duan et al., 2011) has been designed to set 

one inner iteration in one outer iteration and obtain the 

marginal function p (bi|y1:N+L) at last. Particle list 

1{ , }k k W

i i kh 
 has been obtained by generic PF and incur-

porated with the sum-product operation to update 

channel message, W denotes the number of particles. 

Detailed steps can be drawn as follows:  

 

 SIS/resampling PF: 

o Important sampling:   

o Sample particles hi
k~p (hi|hi-1), k = 1, …, W, where 

k and i stand for particle index and time index, 

respectively 

o Compute the weights according to: 

1
( , )

i

k

i i i

x

k k

i iw w p y x h


   

 
o Normalize the weights 
o Resampling:  Following   the  approach  (Doucet 

et al., 2000), calculate the effective number of 
particles:  

 

W

=1

2
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)k

i

k

effN
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and implement the resampling when Neff<0.75 W. 

o For pilot symbols, drawing particles from p (yi|xp, 

hi) and seting the weight of each particle with 

equal values 1/W 

 Computing the data symbol’s message which is a 
mixture gaussian distribution as:  

 

1

( ) { }
i yi

m

x T i l i l

l

P x q I x q 



                                 (7) 

 
The indicator function I {statement} is 1 if the 
statement is true and 0 otherwise. And pilots’ 
messages are multiplexed into data symbols’. 
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 Computing and passing the message upward from 
function node p (yi|xi, hi) to variable node hi by: 

 

y

1

( ) ( , )

( ) ( , )

i i i yi

k k

T h i x T i i i

m
k

i l i l i

l

h p y x h

P x q p y q h

  



 

  
                    (8) 

 
where ql is symbol constellation point. This 

message is a mixture Gaussian pdf. 

 Updating messages forward and backward by using 

sum-product rule and outputing the messages 

downward as in (9-11).  

 

When the channel at the receiver and actual 

channel are all modeled by AR (1) process (Zhu et al., 

2009; Tienda-Luna et al., 2005; Guo and Hu, 2009; 

Duan et al., 2011), there is no modeling mismatch. 

Although the channel messages have been computed by 

particles in NMPA, PF still suffers from progressive 
impoverishment and degeneracy. Furthermore, when 

the actual channel is generated by Jakes’ model, 

channel model mismatch will exist and the particle 

impoverishment will have more negative effect on 

channel estimation. A method to reduce degeneracy is 

increasing the number of particles, but it is impractical 

for high complexity. It is necessary to use a more 

efficient re-sampling method to solve this problem: 
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1 1
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            (11) 

 
For discrete variables in ID, the sum-product rule 

(Duan et al., 2011) has been applied to compute their 
messages. The max-sum algorithm (Henk, 2007) for 
higher order demodulator and the min-sum algorithm 
for LDPC decoder have been deduced by max-product 
rule (Loeliger, 2004) to decrease complexity. Therefore, 
we employ this type of rule instead of sum-product rule 
to update the log-domain messages as in (12):  
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However, if the sum-product rule is employed in 
channel estimator, transforming message definition 
domain between ID and CE as in: 

 

exp( )

log( )

i yi i yi

yi i yi i

x T x T

T x T x

L
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                                         (13) 

        (13) 

will require more computation. This is another 
complexity problem of soft iterative CE.  
 

MODIFIED NONPARAMETRIC  

MESSAGE PASSING ALGORITHM IN  

CHANNEL ESTIMATION 
 

To solve the two main problems of NMPA as 
mentioned above, we apply a MCMC move step in PF 
algorithm and derive max-sum message update rule to 
compute particle-based messages in CE. It is named a 
Modified NMPA (MNMPA). 

 
MCMC PF: Resample-Move algorithm (Gilks and 
Berzuini, 2001) is one of effective methods to 
rejuvenate degenerate samples by using MCMC in 
sequential state estimation problem. The particles have 
approximately followed the desired posterior 
distribution, so it does not require each MCMC chain 
initiated to have a burn-in period. The key study is to 
construct a transition kernel for which common choices 
involve the Gibbs sampler or Metropolis Hastings (MH) 
move. For the channel estimation problem, the MCMC 
with MH in PF moves the particles to new positions 
which tend to follow stationary distribution. In the end, 
the diversity of particles is increased and the depletion 
of the samples is avoided. The MCMC PF is carried out 
in the first step of CE: 

 

 SIS/resampling: ℎ̂𝑖
𝑘

 
are obtained by typical PF as 

mentioned above 

 MCMC move: MH algorithm is implemented on 

each particle: 

For k = 1 to W 

o Drawing proposal candidate particles:  

 

hi
k~p (hi|hi-1) 

 

o Sampling u according to uniform distribution from 

the interval [0, 1] 

o If u<min {1, p (y|hi
k) /p (y|hi

k)}, then accept the 

move: =k

i

k

ih h , otherwise ˆ=k k

i i
h h  

 For pilot symbols, drawing particles from p (yi|xp, 

hi) and setting the weight of each particle with 

equal values 1/W 
 
Channel estimate accuracy is improved by this 

MCMC PF, thus the first problem is well solved. 
Meanwhile, the additional move step will increase 
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computational cost since the particles in generic PF do 
not rely on jump moves. 

 
Max-sum particle-based message update rule: In 
other steps of CE, we define messages in log domain 
and derive a new message update rule for the estimator 
to update particle based message by an approximation 
of the Jacobian logarithm. It not only takes advantage 
of max and sum operation to minimize computation 
complexity caused by MH move step and domain 
transformations but also provides a kind of unified 
max-sum rule for all parts in iterative receiver. The 
details are presented as follows: 
 

 Updating message upward from function node p 
(yi|xi, hi) to variable node hi in log domain. 
Applying the Jacobian logarithm results in: 

 

1
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where,  

 

( = ) log ( , )
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k
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| |
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Leaving out logarithmic operations in core 
computation M, we get the input message of 
channel estimation: 

 

1( ) max( , )
yi i

k

iT h mhL L L 
                              

(15) 

 

 Passing messages forward from Th(i+1) to hi+1 and 
backward from Thi to hi-1 by (16) and (17) in log-
domain:  
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where, 
 

11| 1( ) log ( | )
i
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i i i iL h p h h
 

 
 

11| 1( ) log ( | )
i

bh

i i i iL h p h h
   

 
Applying the same method as in (14) and (15), we 
obtain: 

 

1| 1 1| | 1
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(18) 

 

The max operation and summation operation in 
(15-18) are intended to get a special summary of 

particle based messages instead of other type 

channel message. This kind of message process is 

referred to as a Max-Sum Rule with Particle (MSR-

P). Considering the complexity of code-aided 

channel estimation, the MSR-P is implemented 

more efficiently by avoiding the exponentiation 

and logarithm when a larger number of particles 

are used: 

 Passing messages downward from function node p 
(yi|xi, hi) to variable node xi with the MSR-P by: 

 

| 1 | 1max(log ( , ) ( ) ( ))( )
yi i

k k k

T x i i i i i
k

b f

i i i i iL p y x h L h L hx
     (19) 

 
Since CE and ID both update the message in log 

domain, the transformations as in Eq. (13) are averted 

to reduce graphical receiver’s complexity. Furthermore, 
the similarity of the proposed MSR-P to max-product 

rule in ID helps to unify the operation form and get 
harmonic cooperation in iterative receiver. 

 

Selective message updating schedule: For the LDPC 

coded BICM system, we designed a basic schedule 

which includes six LDPC decoder iterations in inner 

iteration. In this schedule, the messages passed Ldec (ci) 

from the decoder to the de-modulator are code bit Log-
Likelihood Ratios (LLRs). The computation of these 

messages will result in high complexity when higher 

order modulation is considered in BICM-ID. Since 

some LLRs become larger as outer iteration increases, 

they are assumed to have high reliabilities and the 

corresponding messages Ldem (dik) need not be updated. 

It is possible to further reduce the BICM-ID 

complexity by designing a selective message updating 

schedule which can be viewed as a process 

dynamically adaptive to the current bit reliability. 

Other than previous applications of a similar idea in 
MIMO-IDMA (Novak et al., 2008), we use soft 

extrinsic information of every LDPC code bit LLR to 

evaluate the bit reliability instead of posteriori LLRs of 

m convo-lutional code bits. The whole schedule is 

completed in such way: 
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 Initialization: The upward message Ldec (ci) out of 
decoder is set to be a uniform distribution. The a-
priori informations of data symbols are assumed to 
be equal and sent upward to CE.  

 Setting static or dynamic threshold: The static 
threshold is fixed to be a constant. The dynamic 
threshold is defined as Lth = L0 + Ld*q, where L0 

and Ld are constants and q is the current iteration.  

 Channel estimation using MNMPA: 

 De-multiplexing: The pilots’ messages are de-
multiplexed from messages of x and the data 
symbols messages are passed downward to the 
demodulator. 

 Adaptively updating message in soft 
demodulator and decoder: If LLRs of ci do not 
exceed the threshold, the corresponding Ldem (dik) 
out from demodulator are computed by employing 
max-sum rule. Otherwise, these messages are not 
updated and saved for next iteration. Next, Ldec (ci) 
are computed by min-sum algorithm after six 
iterations itself.  

 Soft interleaver and modulating: The input 
messages Ldec (ci) are interleavered and modulated 
to data symbols messages. 

 Multiplexing: Pilots’ messages are multiplexed 
into the data symbols messages and outputs are 
Lxi→Tyi. 

 If the algorithm is not converged, return to step of 
Channel estimation using MNMPA. Otherwise 
return: Hard decisions of information bits. 

 
This alternative scheduling of MNMPA can be 

viewed as a process dynamically adaptive to the current 
bit reliability. 

 
SIMULATION SETTINGS AND RESULTS 

 
In our simulation, correlated Rayleigh flat-fading 

channel is generated by Jakes’ channel model. QPSK 
and  16QAM  modulation  are employed. The energy of  

pilot symbols is equal to the average energy of data 

symbols. The LDPC code under consideration is 

column regular with column weight 3 and block size 

2448 at code rate 1/2. There is no channel inter-leaver 

in the transmitter since the LDPC code has a built-in 

inter-leaver. Each Min-sum LDPC decoding is set to six 

passes within every outer iteration. To achieve better 

decoder performance, the normalization factor of Lci->bj 

is set to be 0.75.  

To start with, we compare our proposed MNMPA 

to the MPA (Guo and Huang, 2010) which can be 

viewed and named as the Kalman Smoothing algorithm, 

SPA (Guo and Hu, 2009) and Max-Sum Algorithm 

(MSA) for QPSK modulation over fast fading and slow 

fading channel. As the modification of SPA (Guo and 

Hu, 2009), MSA denotes the algorithm which only 

employs   MSR-P  instead   of   sum-product   rule   for 

particles message passing in CE and still uses SPA in 

ID. Two types of noise distributions, Additive White 

Gaussian Noise (AWGN) and Non-Gaussian noise, are 

considered in Fig. 2 and 3, respectively. The result with 

perfect Channel State Information (CSI) is considered 

as a benchmark. As shown in Fig. 2a, MNMPA has the 

best performance among all graph-based channel 

estimation algorithms. The MNMPA with 150 particles 

not only achieves 0.5 db gains compared to SPA with 

the same particle number but also gets better 

performance than SPA with 250 particles. The 

complexity of CE is decreased proportional to the 

numbers of particles. Therefore, a good tradeoff 

between the performance and complexity is obtained by 

the proposed MNMPA. MSA has the same performance 

as SPA and lower complexity due to MSR-P as 

analyzed in section of Max-Sum Particle-Based 

Message Update Rule. The cause of the inferior 

performance of Kalman Smoothing is that it is n not the 

optimal algorithm for CGLSM and the mixed 

 

 
 

(a)                                                                                                 (b) 

app:ds:threshold
app:ds:threshold
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(c) 

 
Fig. 2: BER performance comparison of MNMPA to MSA SPA and Kalman smoothing for system in AWGN with (a) 150 

particles and (b) different number of particles for K = 9 and  fdTs = 0.02; (c) 150 particles and different K for fdTs = 0.005.  
All performance shown in (c) are obtained after three outer iterations 

 

 
 

Fig. 3: BER performance comparison of MNMPA and other 

FG based receiver algorithms for system with Dopple 

spread fdTs = 0.02 (shown with solid lines) and fdTs  = 

0.005 (shown with dashed lines), the non-Gaussian 

noise is assumed as Middleton class A noise 

 

 
 
Fig. 4: BER performance versus complexity of MNMPA with 

150 particles for Eb/N0 = 8 db 

Gaussian pdf as in (8) is simplified as a single Gaussian 

pdf by using soft decision of symbols to approximate 
message μxi->Tyi. On the other hand, other NMPAs 

including SPA, MSA and MNMPA all compute this 
message by list of samples which can describe 

distributions closer to the true one when more particles 
are employed. 

Figure 2b shows the performance of MNMPA with 

different number of particles for faster fading channel. 

Contrast that to using 50 particles, MNMPA acquires 

0.3-1.2 and 0.5-1.0 db performance gains by using 250 

and 150 particles, respectively. The more particles that 

are utilized, the more precise channel estimation will be. 

However, computation cost increases with this better 

performance. Meanwhile, there is little performance 

improvement when using more particles in low Eb/N0. 
With 0.5 db loss, the MNMPA with K = 13 

approaches the performance with perfect CSI in Fig. 2c. 
Comparing the performance gap with that in Fig. 2a, we 

attributed the improvement to lower time diversity 
provided by the slower fading channel. Therefore, fewer 

particles are needed for tracking slower fading channel 
than that for faster fading channel. In addition, we also 

observed that the gap between SPA and MNMPA 
decreases to 0.2 db. In view of the pilot symbol spacing, 

a tradeoff exists between spectrum utilization efficiency 
and performance. The MNMPA with K = 13 achieves 

0.5-1 db gain compared to that with K = 25. Since this 
gap widens to 1.5 db when other algorithms are 

performed, MNMPA is less sensitive to the variation of 
pilot spacing.  

The Middleton Class A noise with ε = 0.3, k = 100 

is considered in Fig. 3. For the non-Gaussian state-space 

model, Kalman Smoothing is not the optimal algorithm 

and is unable to catch the channel variation, while all 

NMPAs are robust to the noise and MNMPA is still the 

most effective. 
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Fig. 5: Performance comparison for 16QAM BICM-ID with 

fdTs = 0.005 K = 13 and AWGN 

 
We conducted a simulation that compares MNMPA 

in three proposed adaptive schedules with a basic 
schedule for faster fading channel. The basic schedule 
with no threshold is denoted by noL. Ls and Lth denote 
the schedule with static and dynamic threshold, 
respectively. Figure 4 shows BER versus complexity 
measured by Nr (q) = N1 (q) / (2*N2), where N1 (q) is the 
cumulative number of messages updated in the qth 
iteration, N2 is code bite number. The dynamic threshold 
is set at Lth = L0 + Ld*q, L0 = Ld = 5. All three schedules 
have lower complexity than a basic schedule. BER 
decreases faster but smoothes-out at higher values when 
static threshold Ls is smaller, or vice versa. In contrast, 
the schedule with the dynamic threshold has 
intermediate behavior and offers a very favorable 
performance-complexity tradeoff. Achieving BER of 
8.7•10-5 with only Nr = 1.8 saves 40% on computational 
amounts compared to the basic schedule with same BER 
and Nr = 3.  

Figure 5 illustrates the performance for 16QAM 
with MSP labeling in a Single-Input Single-Out (SISO) 
BICM system with AWGN. MSA approximates SPA 
and provides better performance with about 0.5 db than 
Kalman Smoothing. MNMPA get 0.5 db gains 
compared to MSA. Meanwhile, the higher order the 
modulation is, the more computation complexity 
reduction is made in MSA and MNMPA. 

 
CONCLUSION 

 
A Nonparametric technique has been successfully 

combined with the max-product algorithm to develop a 
new algorithm MNMPA for soft iterative channel 
estimation. It assumes no limitations on the type of 
relations between the variables and is not restricted to 
the Gaussian noise assumption. Compared to basic SIS 
re-sampling PF, the MCMC based PF algorithm can 
maintain the diversity of particles to avoid the sample 
impoverishment and can obtain more accurate channel 

estimation with a fewer number of sample particles. 
Simulation results show that it has not only better 
performance than Kalman smoothing algorithm but also 
is robust to Gaussian and non-Gaussian noise. 
Moreover, it is a new low-cost algorithm because of the 
unified max-sum message update operation in log-
probability domain and well-designed selective 
message update schedule with static or dynamic 
threshold. 

While this study focuses on the SISO BICM 

system, the extension of this method to Multi-Input 
Multi-Output (MIMO) BICM system is the next natural 

step. Furthermore, the potential property of the 
proposed NMPA will encourage us to carry out its 

general application into other iterative receiver design, 
e.g., equalization, multi-input multi-output detecting 

and decoding. Our proposed particle-based MPA is also 

applicable to many estimation problems which can be 
modeled in hidden Markov chain in communications, 

e.g., channel estimation, phase estimation. 
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