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Abstract: Determination of the velocity profile in open channels (particularly in narrow channels) with turbulent 
flows has always been the subject of attention and studies of researchers. This is due to the fact that knowing the 
velocity distribution it is possible to calculate the distributions of shear stress and the discharge in the channels. 
However, due to the complexity of conditions governing the flow, which are the consequences of the non-isotropic 
state of turbulence and the existence of Prandtl type 2 secondary flows; it is difficult to introduce a model that would 
be capable of properly defining the velocity distribution in narrow open channels. Many researchers have tried to 
modify the famous logarithmic law, which responds well in the case of wide open channels, to suit the narrow 
channels as well, thereby allowing the modified model to describe the negative gradient of velocity beneath the free 
surface of water (known as dip phenomenon). However, in this context, they have been forced to set limitations on 
their models, which have in turn limited their applications. For this reason by using the laws of mathematics and 
simplifying the Navier-Stokes equations, some researchers have presented models that are capable of calculating the 
velocity profile in narrow channels in a satisfactory manner with the least constraint for application. Two models 
that are derived from Navier-Stokes are introduced in this study and their results are compared with experimental 
data. 
 
Keywords: Dip phenomena, maximum velocity, narrow channel, Navier-stokes, turbulent flow, velocity 

distribution 

 
INTRODUCTION 

 
Estimation of the velocity distribution has always 

been an important issue for researchers. As the most 
famous law for estimation of velocity in open channels, 
logarithmic has for years been used by engineers and 
studied by various researchers. This law is quite 
suitable for describing the velocity distribution in the 
inner region, but for the outer region it is only 
responsive in wide open channels, which have a width 
to depth ratio of over 5. It cannot estimate the velocity 
distribution in narrow channels where there are 
secondary flows of Prandtl type 2, which create the dip 
phenomena (negative velocity gradient close to the 
surface of water) (Bonakdari, 2006). The reason for this 
is the occurrence of maximum velocity below the free 
surface of water resulting in a 1 to 1 relation between 
the component of velocity and the component of the 
vertical location. 

In the recent decade, researchers such as Coles 
(1956), Chow (1959), Henderson (1966), Sarma et al. 
(2000), Shiono and Feng (2003), Yang et al. (2004), 
Absi (2011) and Bonakdari (2006) have tried to modify 
the logarithm law or present new models on the basis of 

conditions governing the outer region of narrow 
channels (B/h<5) to obtain the velocity distribution in 
this region. By addition of corrective expressions to the 
logarithm law, Coles (1956) and some other researchers 
as Chow (1959) and Henderson (1966), studied more 
comprehensive the velocity distribution. These laws 
present a positive gradient of the velocity in the flow 
depth and the maximum velocity occurs at the free 
surface; then, Sarma et al. (2000) suggested some other 
laws by dividing cross section into four regions and 
determining velocity distribution equations in each 
region to show longitudinal velocity profile over whole 
of cross section. In compund sections, Shiono and Feng 
(2003), represented a velocity distribution which 
showed the effects of steady slope of channel and 
secondary flow; its maximum velocity occurred in 0.5 
to  0.7 y���  (maximum  level of water surface). Yang 
et al. (2004) have tried to improve the results of the 
logarithm law in the outer region. 

Bonakdari (2006) and Absi (2011) have also used 
the Navier-Stokes equations to propose models, which 
have yielded much better results than others. Since 
these two models are based on mathematical relations 
and  their  simplification,  they can readily be used for  
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Fig. 1: Selected specifications for models introduced 
(Bonakdari, 2006) 

 
natural and artificial channels. In particular these two 
models can be applied for wastewater channels to 
calculate the flow. This study reviews these two models 
and compares their results with the actual and lab data. 
 

BONAKDARI’S MODEL 
 

Bonakdari (2006) conducted a number of 
simplifications on the Navier-Stokes to propose a 
model for velocity distribution in broad and narrow 
open channels with turbulent flows. Taking into 
consideration the assumptions described below, in this 
model the momentum relation, which has been obtained 
on the basis of Navier-Stokes equations, has been 
simplified. 

The flow has been assumed to be continuous, 

steady and fully developed (
�

�� =  �
�	 = 0), the selected 

specific system is according to Fig. 1 and the relation of 
the momentum for the longitudinal component of the 
flow, i.e., x has been obtained as below: 

 

 ��
�	 + � ��

�� + � ��
�� =  − �

�
��
�� + � ���

��� +  � ���
��� −

�������
�� −  ��������

�� + ����                                    (1) 

 

Since the flow with the free surface (
��
�� = 0) and in the 

central region of the channel the level of changes of 
velocity i.e. the gradient of the vertical component of 
the velocity is higher than its horizontal component, 

( �.
�� ≫  �.

��) (Rodi, 1993) and further since the outer 

region is considered to be 0.2$ ≤ & ≤  $ (Bonakdari, 
2006), after integration in the outer region i.e., 0.2$ ≤& ≤ $ relation 1 will be obtained as follows: 
 

�'(() − �'(�) =  )*� +�
+�,(() −  *� +�

+�,(�)- −
 .(/�)�����(() − (/�)�����(�) 0 +  ���� 1 ($ −  &)            (2) 

 
On the other hand in the free surface of water, the 

vertical component of velocity (V), the component of 
fluctuation of the vertical velocity (v) and the amount of 

shear velocity i.e., 
+�
+� are all equal to zero (� ≈ � ≈

 +�
+�  ≈ 0) (Bonakdari, 2006). 

Therefore, relation 2 has been simplified as follows: 
 

�'(�) =  − *� +�
+�,(�) +  (/�����)(�) + ����1($ − &)(3) 

 
The first expression to the right of relation 3 

reflects the effect of viscosity in the central region of 
the channel. In the outer region the effect of this 
expression is negligible and can be ignored 

(*� +�
+�,(�) ≅ 0). Moreover the second expression to the 

right of the above relation represents the Reynolds 
stresses, which, assuming the Boussinesq's Hypothesis 
would be equal to: 
 

 −(/�����) =  �	 +�
+�                  (4) 

 
This relation has been proposed by Rodi (1993), in 

which �	 is the vortex viscosity. Nezu and Nakagawa 
(1993) have proposed the following relation for the 
vortex viscosity: 
 �4

�∗ = 6&(1 − 8)                              (5) 

 
In which, /∗ is the shear velocity and equal to 

/∗ =  9:; <=  , :; is the local shearing stress and 
�
( =  8. 

6 is also the Von Karman constant assumed to be equal 
to 0.41. By placing relation 5 in Eq. (4) related to 
Reynolds stresses, the following relation is obtained: 
 

−(/�����) =  /∗6& (1 −  8) +�
+�               (6) 

 
By placing in Eq. (6) in (3): 
 

�'(�) =  6/∗&(1 − 8) +�
+� − �$���1(1 − 8)       (7) 

 
Bonakdari (2006) have considered the value of � /∗⁄  as equal to the following relation: 

 
?
�∗ =  −@ A(�BA�)C

�A� D AD EFG                              (8) 

 
The model proposed by Bonakdari (2006) is the 

following relation, which is obtained by placing relation 
8 in Eq. (7) and taking their integral: 

 
�(A)

�∗ =
 HC

�AI�DAIDEFGC
�A�DADEFG J ×

)H*C
LA�DADEFGMNA,B*C

LAI�DAIDEFGOP (AI),
C
�AI�DAIDEFG J-  ×  Q

R + �(AI)
�∗   (9) 

 

In which k is the Von Karman constant, S = (�$���1) /∗T⁄  has a physical significance calculated on  
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Table 1: Similarities Bonakdari’s and Absi’s models 

Reynolds 
stresses 

Viscosity in 
outer region 

The limits of 
outer region Flow condition in the outer region 

Dominant 
equations Model name 

Boussinesq's 
hypothesis U� V'

V&W ≅ 0 
0.2<y<D X.

X& ≫ X.
XY 

Free surface 
flow 

Continuous and 
steady flow 

Navier-stokes 
equations 

Bonakdari 
model 

Boussinesq's 
hypothesis U� V'

V&W ≅ 0 
0.2<y<D X.

X& ≫ X.
XY 

Free surface 
flow 

Continuous and 
steady flow 

Navier-stokes 
equations 

Absi model 

 
Table 2: Differences Bonakdari’s and Absi’s model 

Vortex viscosity Parameter α 
The condition of the width 
component of velocity 

Velocity distribution in the inner 
region Model name 

Relation (5) S = (����1)//∗T Relation (8) Logarithm law is used Bonakdari model 
Relation (15) S = S� + ST Yang hypothesis 

�?
�∗� ≈ −ST �

[ The proposed model is responsive Absi model 

 
the basis of the specifications of the channel and the 
hydraulic conditions of the flow and 8\ represents a 
specific situation in vertical axis. 

The final form of the Bonakdari’s model will be as 
below, in which logarithm is used for the inner region 
(relation 10) with the assumption that the length of this 
layer is 0.2 h, while providing Eq. (11) for the outer 
region, which includes regions above the border layer 
to the surface of open water: 
 �(AI)

�∗ =  �
]  ^� *_.T[

]` , +  ab                                    (10) 

 �(A)
�∗ =

HC
�AI�DAIDEFGC
�A�DADEFG J × )H*C

LA�DADEFGMNA,B*C
LAI�DAIDEFGOP (AI),

C
�AI�DAIDEFG J ×

 S6+ 16^�0.2ℎ6�+ a� /∗                                     (11) 

 

Researchers have reported differing values of 5.1 
to 5.5 for the parameter ab (Nezu and Rodi, 1986; 
Cardoso et al., 1989; Kirkgoz and Ardiclioglu, 1997). 
The advantage of the model lies in the fact that it can be 
applied in all channels whether broad or narrow and its 
parameters can be easily calculated on the basis of 
geometric and hydraulic specifications of the channel 
and the flow. 

 
ABSI’S MODEL 

 
Absi (2011) also presented his model by 

simplifying the Navier-Stokes equations. This model 
and its underlying assumptions will be explained in the 

following sections. Absi has also considered ( �.
�� ≫  �.

��) 

for the central region of the channel. He has also 

considered the value of expression *� +�
+�, as negligible 

and the relation 1 in the following form Absi (2011): 
 +�?

+� +  +������
+� = ����1                 (12) 

 

By taking the integral of the above relation, 
substituting S� = (�$���1)//∗T − 1 and using the 

hypothesis proposed by Yang for the expression 
�?
�∗�  

(i.e., 
�?
�∗�  ≈ −ST �

[ ) relation 12 is changed as follows: 

− ������
�∗� = (1 − 8) − S8                                          (13) 

 

In which, S =  S� +  ST. Absi has applied the 

Boussinesq's hypothesis, i.e., Eq. (4) for the expression /�����: 
 

+�
+� = �∗�

�4 d(1 − 8) − S8e                   (14) 

 

Instead of using the equation proposed by Nezu 

and Nakagawa (1993) for vortex velocity Eq. (5), Absi 

has proposed the following relation (Nezu and Rodi, 

1986): 

 
�4

�∗[ = 6(1 − 8) f�
A + gΠ���(g8)hB�                   (15) 

 

By placing relation 15 in Eq. (14), the following 

relation is obtained: 

 +�i
+A =  �

R *1 − S A
�BA, f�

A + gΠ���(g8)h             (16) 

 

In this relation 'j =  �
�∗ and for S = 0 and Π =  0, 

the integral of the above relation is the logarithm law. 

Finally by taking the integral of relation 16, Absi 

(2011) has proposed his model, which consists of 4 

expressions: 

 

'j =  �
R ^� * A

Ak, + TΠ

R ���T *l
T 8, + Q

R ^�(1 − 8) −
QlΠ

R m A
�BA ���(g8)V8A

A_                (17) 

 

The first three expressions of this model are in 

order the logarithm law, the Coles function and the 

modified expression added by Yang to the logarithm 

law. However the fourth expression, which is in the 

form of a specific integral, is the expression added by 

Absi, which is the distinguishing parameter of this 

model compared to the previous modified models. 

 

Differences and similarities of models: There are 

differences and similarities between the assumptions 

made  by these  two  researchers as shown in Table 1 

and 2. The similarities are mainly related to the general 
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Fig. 2: nop based on different qp (Bonakdari, 2006) 

 
Table 3: The different values proposed for parameter Π 

Dependent conditions Π Value Researcher 

Dependent on reynolds number 0.55 Coles (1956) 
At high reynolds values for level bed 0.55 Cebeci and Smith (1974) 
Dependent on reynolds shearing value for level bed 0~0.20 Nezu and Rodi (1986) 
For steady flow and level bed 0.08 Cardoso et al. (1989) 
For level bed 0.10 Kirkgoz and Ardiclioglu (1997) 
For froude number of greater than 1 and reynolds number of greater than 105 0.30 Li et al. (1995) 
To better demonstrate the dip phenomena 0.45 Absi (2011) 

 

condition of the flow in open channels, but the 
differences are related to the condition of applying 
secondary flow, which is an essential and determining 
parameter in the accuracy and performance of the 
models, to the velocity distribution. The effect of this 
important parameter and the method of applying it on 
the models is clearly seen in the results of these two 
models. 
 

Comparison of parameters: The main parameters in 

Bonakdari’s model are S and nop . S represents the 

physical condition of the channel, i.e., dimension, slope 

and the condition of the channel’s bed and its relation is 

such that it always has a positive value. Parameter nop , 

which represent the location of maximum velocity, is 

the main parameter in Bonakdari’s model. This 

parameter shows the curve of the velocity profile in the 

region close to the location of the maximum velocity 

and is the determining parameter of this curve. The 

experimental relation, which has been obtained by 

Bonakdari for nop  and 8+\w on the basis of lab data, is as 

under: 

 nop = 9.3 8+\w�.z                (18) 

 

The parameter 8+\w has been studied by various 

researchers and many experimental relations have been 

proposed for it. Wang et al. (2001) and Yang et al. 

(2004) have proposed an experimental relation on the 

basis of qp. Bonakdari has also proposed a lab relation 

on the basis of qp as below. Figure 2 shows the graph 

obtained from this experimental relation for different 

values of qp (Bonakdari, 2006): 

8+\w =  {T.{DoGL.�
|{.zDoGL.�                                                  (19) 

 

The parameters of Absi’s model are in order α1, α2 

and Π. Parameter α1, is similar to Bonakdari’s 

parameter, with this difference however that its value is 

always one unit less that the Bonakdari’s parameter and 

describes the physical conditions of the channel. 

Parameter α2 was introduced in the year 2004 by Yang 

et al. (2004). It acts as the parameter in Bonakdari’s 

model and describes the curve of velocity profile and 

the location of maximum velocity in narrow channels. 

The equation proposed by Yang for this parameter is 

presented below and depends on the breadth component 

of the channel, i.e. z and the breadth to depth ratio: 

 

ST = 1.3 exp *− _.�oGT�
� ,              (20) 

 

Parameter Π was defined used for the first time by 

Coles (1956). This parameter has been studied by 

various researchers and different values have been 

proposed for it as shown in Table 3. As � increases its 

accuracy and effect on the curve of velocity profile is 

quite noticeable and by calibrating this parameter with 

lab and actual data its impact can be further increased. 

Parameter S =  S� + ST has also been obtained by 

Absi (2011)  as  follows  by  taking  the  derivate  of 

Eq. (16) to determine the location of maximum 

velocity: 

 

S =  �
A�I� − 1                                                        (21) 
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Fig. 3: Cordon bleu wastewater channel (Bonakdari, 2006) 
 

 
 

Fig. 4: Rectangular open channel of the lab (Li et al., 1995; 
Chiu and Hsu, 2006) 

COMPARISON OF MODELS FOR VELOCITY 

ESTIMATING 

 

To compare the Bonakdari’s model with the Absi’s 

model, lab data collected from a natural channel 

(Bonakdari, 2006) and two lab channels (Chiu and Hsu, 

2006; Tominaga et al., 1989), were used. The cross 

sections of these channels as well as the sections on 

which velocity was measured are shown in Fig. 3 and 4. 

In Fig. 5 the two models introduced by Bonakdari 

(2006) and the collected data are evaluated. The 

velocity distributions for depths of 0.65, 091 and 1.19 

m in a quasi-rectangular channel have been traced. As 

observed, the Bonakdari’s model has a greater 

conformity than the Absi’s model and the maximum 

deviation in Bonakdari’s model is 3% whereas in 

Absi’s model it can reach up to 5% as well. 

Figure 6 evaluates the Bonakdari’s and Absi’s 

models on the basis of data provided by Chiu and Hsu 

(2006) measured in a lab channel. This figure shows the 

Absi’s model, which is as good as the Bonakdari’s 

model with a deviation of approximately 3% in velocity 

distribution. 

 

 
 

(a) D = 0.65 m 

 

 
 

(b) D = 0.91 m 
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(c) D = 1.19 m 

 
Fig. 5: Profile of longitudinal velocity traced on the basis of data provided by Bonakdari (2006) 

 

 
 

(a) D = 2.31 cm 

 

 
 

(b) D = 100 cm 
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(c) D = 186 cm 

 
Fig. 6: Profile of longitudinal velocity traced on the basis of data provided by Chiu and Hsu (2006) 

 

 
 

(a) D = 10 cm 

 

 
 

(b) D = 20 cm 

 
Fig. 7: Profile of longitudinal velocity traced on the basis of data provided by Tominaga et al. (1989) 
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Table 4: Values of parameters on the basis of lab data 

Models 

Bonakdari’s parameter 

---------------------------------- 

Absi’s parameter 

------------------------ 

Parameters S nop S Π 

D = 0.6500 1.30 4.73 0.35 0.45 

D = 0.9100 2 3.10 1.05 0.45 

D = 1.1900 2.20 2.60 1.08 0.45 

D = 0.0231 1.55 7.87 0.60 0.10 

D = 1.8600 1.77 2.44 0.82 0.10 

D = 1000 1.70 3.32 0.78 0.10 

D = 0.1000 1.35 7.57 0.37 0.10 

D = 0.2000 1.85 3.32 0.92 0.10 

 

In Fig. 7, which has been traced on the basis of data 

measured by Tominaga et al. (1989) in a rectangular lab 

channel, the accuracy of these two models in estimating 

the longitudinal velocity profile in narrow channels. 

Table 4 is also drawn on the basis of these data showing 

the parameters defined in each model for these data. 

As observed in Fig. 5 to 7 due to the application of 

relation 15 instead of 5, the Absi provide a better 

description of the velocity profile curve in narrow 

channels and the dip phenomena. The expression 

f�
A + g����(g8)hB�

 in relation 15 is a trigonometric 

function dependent on parameter Π and the role of this 

parameter in describing the curve of velocity profile in 

narrow channels. This parameter has resulted in better 

results of Absi’s model in describing the dip 

phenomena at narrow channels in comparison with 

Bonakdari’s model. On the other hand due to a more 

accurate definition of the breadth component of the 

velocity, i.e., �//∗ in the central region of the channel, 

the Bonakdari’s model has a better conformity with the 

lab data (Fig. 5), while close to the channel walls the 

Absi model has a better conformity with the measured 

data. 

 

CONCLUSION 

 

Since the logarithm law cannot be applied for 

narrow channel of breadth to depth ratio of less than 5 

and cannot describe the dip phenomena, various 

researchers have tried to modify the law or present a 

new model on the basis of law governing open channel. 

In this study the two models proposed by Bonakdari 

and Absi on the basis of Navier-Stokes equations to 

describe the longitudinal velocity profile, have been 

studied and evaluated according to measured data. The 

main difference of these models lies in their definition 

of the two parameters of �	 and �//∗. 

By applying the more accurate relation for �	, the 

Absi model describes better the negative gradient of 

velocity in the proximity of free water surface thereby 

making it possible to use this model for narrow 

channels. On the other hand, by considering the effects 

of secondary flow in his model Bonakdari has also 

proposed it for use in narrow channels. The advantages 

of these models are the low number of parameters and 

the limitations applied due to initial assumptions, which 

have made the widespread use of these two models both 

in broad and narrow channels. The easy and simple 

calculations in these models have facilitated their 

application in water and river engineering and in 

estimation of flow, velocity distribution and shear 

stress. In future by calibrating these two models' 

parameters and by benefiting from greater number of 

data it will be possible to improve their accuracy and 

performance. 
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