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Abstract: Chapman-Richards function is used to model growth data of dahurian larch (Larix gmelinii Rupr.) from 
longitudinal measurements using nonlinear mixed-effects modeling approach. The parameter variation in the model 
was divided into random effects, fixed effects and variance-covariance structure. The values for fixed effects 
parameters and the variance-covariance matrix of random effects were estimated using NLME function in S-plus 
software. Autocorrelation structure was considered for explaining the dependency among multiple measurements 
within the individuals. Information criterion statistics (AIC, BIC and Likelihood ratio test) are used for comparing 
different structures of the random effects components. These methods are illustrated using the nonlinear mixed-
effects methods in S-Plus software. Results showed that the Chapman-Richards model with three random parameters 
could typically depict the dahurian larch tree growth in northeastern China. The mixed-effects model provided better 
performance and more precise estimations than the fixed-effects model. 
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INTRODUCTION 

 

Analysis of repeated measurement data is a 
recurrent challenge to statisticians engaged in biological 
and biomedical applications. A common type of 
repeated measurement data is longitudinal data. 
Longitudinal data can be defined as repeated 
measurement data where the observations within 
individuals could not have been randomly assigned to 
the levels of a treatment of interest. Repeated 
measurements data are data in which multiple 
individuals have multiple measurements over time or 
space. Thus the method of analysis for this type of data 
needs to recognize and estimate two distinct types of 
variability: between-individual variability and within-
individual variability. Nonlinear mixed effects models 
provide a tool for analyzing repeated measurements 
data and give an unbiased and efficient estimation of 
the fixed parameters of the model. Furthermore, 
nonlinear mixed models improve predictive ability if 
we are able to predict the value of the random 
parameters for an unsampled location. This is possible 
if complementary observations of the dependent 
variable are available. There has been a great deal of 
recent interest in mixed effects models for repeated 
measures data in forestry (Calama and Montero, 2004; 
Gregoire et al., 1995; Jiang and Li, 2008a, b, c). 

Forest biometricians have been developing and 
adapting statistical techniques to improve tree growth 
prediction to meet particular objectives for forest 

growth and yield system. The aim of this study was to 
investigate the algorithm for dahurian larch (Larix 
gmelinii Rupr.) tree grow modeling using nonlinear 
mixed-effects modeling approach with random 
parameters and autocorrelation. 
 

MODELING ALGORITHM 
 
Algorithm for nonlinear mixed modeling: The 
general expression for a nonlinear mixed effects model 
can be written as Pinheiro and Bates (2000): 
 

  iijijiij njmitfy ,...,1,,...,1,        (1)  

 

where, 
yij = A diameter measurement at time j for the ith tree  
tij  = Age (years) for the ith tree on time j 
m  = The number of trees, ni  is the total number of 

measurements on tree i 
f  = A nonlinear function, βi is a parameter vector, εij  

is a normally distributed within-plot error term 
 

The parameter βi varies from tree to tree to account 

for between-individual variation. The parameter βi can 

be expressed as: 
 

iiii bBA                  DNbi ,0~                        (2) 

where β is a  p × 1 vector of fixed effects parameters, bi  

is a q × 1 vector of random effects parameters, p  is the 
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number of fixed parameters in the model, q is the 

number of random parameters in the model, D is the 

variance-covariance matrix for the random effects. In 

the basic assumptions, the within-tree errors are 

independent and the εi  follow a N(0, Ri) distribution 

and are independent of bi, Ai and Bi  are design matrices 

for the fixed and random effects respectively. These 

design matrices contain zeros and ones associated with 

the fixed and random effects.  

After initial screening of some growth models, 

such as Chapman-Richards, Logistic, Weibull and 

Gompertz, the Chapman-Richards model was selected 

for this study due to its flexibility and biologically 

interpretable coefficients. The form of the Chapman-

Richards model is: 

   3
21 exp1


 ty                                               (3) 

where, y is tree diameter (cm), t is age (years), β1, β2, β3 

are regression coefficients. 

 

Model development: Commonly, three steps were 

involved for mixed-effects model development 

(Pinheiro and Bates, 2000). First, the parameters of the 

model were specified either as mixed (both random and 

fixed) or purely fixed.  Then the structure of the among-

tree variance-covariance matrix (D) was determined. 

Finally, the within-tree variance-covariance structure 

(Ri) was determined to account for heteroscedasticity 

and residual correlation. 

Data from stem analysis of 40 trees were collected 

from Daxinganling region in Heilongjiang Province, 

northeastern China. This species is common and 

commercially important in northeast China. Sample 

trees were selected from the dominant and codominant 

crown class, undamaged and unsuppressed. Each 

sample tree was felled and disks were extracted at 

breast height (1.3 m). The number of annual rings and 

ring width were measured for each disk. The 40 sample 

trees yielded 528 diameter-age pairs. 

Parameter effects were analyzed first. For the 

construction of a mixed model, the first question that 

should be addressed is determining which effects 

should be considered mixed and which should be 

considered purely fixed. An intuitive approach is to fit 

diameter-age models to each individual tree and assess 

the variability of estimated parameters by considering 

the individual confidence intervals (Lindstrom and 

Bates, 1990). The parameters with high variability and 

less overlap in confidence intervals across trees should 

be considered as mixed effects. This approach requires 

sufficient observations on each individual to give 

meaningful parameter estimates by the individual fits. 

In our case there are over 15 observations for each tree 

and thus it is possible to get the confidence intervals of 

the parameters for each individual fit. 

Variance-covariance structure was further 

investigated. The among-tree variance-covariance 

matrix for the random-effects (D), common to all trees, 

defines the existing variability among tree. First, we 

assume that the random effects are independent of each 

other which make a diagonal random effects variance-

covariance matrix to reduce the number of parameters 

in the model, then different random effects variance-

covariance structures (e.g. diagonal and general 

positive-definite matrices) will be explored to 

determine whether a correlated variance-covariance 

structure is needed for random effects. 

To specify the within-tree variance-covariance 

structure (Ri), two components of the heterosedasticity 

and the autocorrelation structure should be addressed 

(Pinheiro and Bates, 1998). The expression for the 

within-tree variance-covariance matrix is then having 

the following form: 

 
5.05.02

IiIi GGR                                                    (4) 

  

where, σ2 is a scaling factor for the error dispersion 

given by the value of the residual variance of the model 

and Gi is a ni × ni  diagonal matrix that specifies within-

tree variance, Гi is correlation structure，i is the tree 

number and ni indicating total number of diameter-age 

measurements in the tree. 

 

Model evaluation and prediction: To evaluate model 

performance, Bias, root mean square error (RMSE) and 

coefficient of determination (R2) were employed. These 

evaluation statistics are defined as:  
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where, yi is observed value for the ith observation,  𝑦𝑖̂is 

predicted value for the ith observation, 𝑦𝑖̅ is the mean of 

the yi, n is the total number of observations used to fit 

the model. The model with the smallest values of Bias, 

RMSE and higher R2 was considered the best. 

Nonlinear mixed-effects models were fitted with the 

NLME procedure in S-Plus 2000 (Mathsoft, Seattle, 

WA). 

The main purpose of final model involves diameter 

prediction for unmeasured trees. An important 

characteristic, compared to traditional regression, is that 

mixed-effects models allow for both mean response and 

calibrated prediction.  
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Fig. 1: Ninety-five percent confidence intervals on the parameters in the Chapman-Richards model based on individual fits 
 

If no sub-sample tree diameters have been 

measured for a particular year, the parameters of 

random effects is not predicted. Thus, the expected 

value 0 is used for all random parameters. The mean 

diameter prediction is obtained using only the fixed 

parameters estimates, where the mean behavior of the 

diameter variation for a certain tree is represented. 

A calibrated response requires prior measured sub-

sample diameter information for a tree. It could 

significantly increase the accuracy of tree diameter 

prediction. If both diameter and age have been 

measured for a sub-sample, the vector of random 

effects bk at the tree level can be estimated using this 

additional information. Calculation is carried out using 

an approximate Bayes estimator of bk (Vonesh and 

Chinchilli, 1997; Fang and Bailey, 2001): 

 

  kk
T
kk

T
kk eRZDZZDb ˆˆˆˆˆˆˆˆ 1

                                       (5) 

  

where 𝐷̂  is the q × q variance-covariance matrix (q is 

number of random-effects parameters included in the 

model) for the among tree variability, 𝑅𝑘̂ is the k × k 

variance-covariance matrix for within-individual 

variability, 𝑧𝑘̂  is the design matrix for the random 

components specific to the additional observations, 𝑒𝑘̂ 

is the difference between the observed diameter and the 

predicted   diameter  using  the fixed effects parameters. 

RESULTS AND DISCUSSION 

 

Determining parameter effects: Individual fits 

approach was first used to determine parameter effect 

either as mixed or purely fixed. Confidence intervals 

were obtained on the parameters in Chapman-Richards 

model showed in Eq. (3) based on individual fits using 

nlsList function in S-Plus. Figure 1 gives the 

approximate 95% confidence intervals for three 

parameters of b1, b2 and b3 in Eq. (3) for each tree 

except that several trees failed to converge. It was 

noticed that, for parameters b1, b2 and b3, the 
confidence intervals of the thirty five trees showed 

more among-tree variability. Therefore, parameters b1, 

b2 and b3 were considered mixed effects. 

In order to get reliable random parameters, The 

Chapman-Richards model with different combinations 

of fixed and random parameters was fitted using 

nonlinear mixed-effects modeling procedure with 

NLME function in S-Plus. Summary of fit statistics 

obtained from fitting the Chapman-Richards model are 

presented in Table 1. 

It indicates that there are significant differences 

between models containing random parameters and 

model with only fixed parameters. These statistics show 

that addition of random-effects improves the model fit. 

Chapman-Richards model with three random 

parameters is the best with the smallest AIC and BIC 

values of 900.02 and 942.77, respectively.  



 

 

Res. J. Appl. Sci. Eng. Technol., 6(13): 2443-2450, 2013 

 

2446 

Table 1: AIC, BIC, log-likelihood, and Likelihood Ratio Tests (LRT) with different fixed and random effects components 

Model 
Random 
parameters 

No. of 
parameters AIC BIC Log-likelihood LRT p-value 

1 b1, b2, b3

 
10 900.02 942.76 -440.01 77.51 <0.0001 

2 b1, b2

 
7 971.53 1001.46 -478.77 601.40 <0.0001 

3 b2, b3

 
7 1108.67 1138.59 -547.33   

4 b1

 
5 1631.42 1652.79 -810.71   

5 b2

 
5 1568.89 1590.26 -779.44 1191.48 <0.0001 

6 None 4 2758.42 2775.51 -1375.21   
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Fig. 2: Scatterplot of the estimated random effects from the fixed model 

 
Table 2: Comparison of mixed-effects model performance with different variance-covariance structures (Diag = Diagonal, Sym = General 

positive-definite)  

Var-Cov Structure No of parameters AIC BIC Log-likelihood LRT p-value 

Sym  10 900.02 942.76 -440.01 84.67 <0.0001 

Diag  7 976.70 1002.35 -482.35   

 
To avoid over-parameterization and ill-

conditioning problems of variance-covariance matrix, 
the scatter-plot matrix of the estimated random 
parameters was produced (Fig. 2). Random parameters 
b1, b2 and b3 did not show high correlation among 
random effects. 
 

Variance-covariance structure: To get the among-tree 

variance-covariance structure, the Chapman-Richards 

model with three random parameters was fitted to the 

data using NLME function in S-Plus. Both diagonal 

(Diag) and  general  positive-definite  symmetric (Sym)  

variance-covariance structures were examined for the 

random effects (D) using Akaike Information Criterion 

(AIC), Bayesian Information Criterion (BIC) and 

Likelihood ratio test (LRT) (Table 2).  

It indicated that two variance-covariance structures 

are significant different (LRT = 84.6, p<0.0001). 

Chapman-Richards model with symmetric variance-

covariance structure resulted in lower values of AIC 

(900.02) and BIC (942.77), indicating that a correlated 

variance-covariance structure was preferred in the 

model fitting. 
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Table 3: Comparisons of mixed-effects model performance with different correlation structures. 

Model 
Correlation 
structure 

No. of 
parameters AIC BIC Log-likelihood LRT p-value 

1 None 10 900.02 942.76 -440.01   

1.1 AR(2) 12 631.29 682.59 -303.64 272.72 <0.0001 

1.2 ARMA(1,1) 12 648.58 699.88 -312.29 255.43 <0.0001 
1.3 ARMA(1,2) 13 640.13 695.70 -307.06 265.88 <0.0001 

1.4 ARMA(2,1) 13 613.64 669.21 -293.82 292.37 <0.0001 

1.5 ARMA(2,2) 14 615.35 675.19 -293.67 292.67 <0.0001 

 
Table 4: Parameter estimates and variance components 

 

Parameter 

Fixed model 

----------------------------------------------------------------- 

Mixed model 

----------------------------------------------------------------- 

Estimate S.E. t-value p-value Estimate S.E. t-value p-value 

Fixed 

parameters 

β1

 
15.1778  0.8804 17.2390 <0.0001 18.0089 1.0604 16.9832 <0.0001 

β2

 
0.0411  0.0072 5.6782 <0.0001 0.0371 0.0027 13.6444 <0.0001 

β3

 
1.9025  0.3183 5.9765 <0.0001 1.9200  0.0740 25.9477 <0.0001 

Variance 

components 

σ2
b1

 
    35.5281    

σ2
b2

 
    0.0002    

σ2
b3

 
    0.0040    

σb2b3

 
      -0.0271    

σb1b3

 
    0.1766    

σb2b3

 
      -0.0007    

σ2 10.4592    0.2038    

Correlation 

parameters 

∅1     1.5466    

θ1

 
      -0.8282    

θ2

 
      -0.9967    

Goodness-of-

fit  

Biαs   -0.0135      -0.0043    

RMSE 3.2249    0.3012    

R2 0.6312    0.9968    

 

Correlation structures: Correlation structures are used 

to model dependence among observations. In the 

context of mixed-effects models, they are used to model 

dependence among the within-group errors. 

Historically, correlation structures have been developed 

for two main classes of data: time-series data and 

spatial data. The former is generally associated with 

observations indexed by an integer-valued time 

variable, while the latter refers primarily to 

observations indexed by a two-dimensional spatial 

location vector. In this study, the sample data is tree 

growth data in which serially correlated errors usually 

arise in the fitting of growth curves to the sample data. 

Correlation structures can be incorporated into mixed-

effects models (Chi and Reinsel, 1989; Lindstrom and 

Bates, 1990). In this study, the AR (p), MA (q) and 

ARMA (p, q) correlation structures were tested for 

inclusion in the mixed-effects model (Table 3). The 

mixed model with different correlation structures 

produced significant improvements in model fitting 

except that several models failed to converge 

(p<0.0001). ARMA (2, 1) correlation structure was 

selected as the best one because the mixed model with 

ARMA (2, 1) correlation structure resulted in smaller 

AIC and BIC values, the ARMA (2, 1) could explain 

more dependency among repeated measurements within 

the individual. The final model is mixed-effects model 

with autocorrelation structure ARMA (2, 1). Parameters 

estimates for the final model are presented in Table 4. 

Scatter plots of Studentized residuals were 

constructed for mixed-effects and fixed-effects models 

(Fig. 3). The Scatter plots showed that the mixed-

effects model showed more homogeneous residual 

variance over the full range of the predicted values and 

no systematic pattern in the variation of the residuals. It 

indicated that mixed-effects model significantly 

improve the model performances compared to fixed-

effects model. In this case, the within-tree variance-

covariance matrix is the diagonal matrix: 

 

niii IR  2                                                         (6) 

 

where Ini is the identity matrix (ni × ni) and other 

variables as previously defined.  

Based on the above considerations, the resulting 

mixed diameter-age model was: 
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Model diagnosis: Before making inferences about a 

fitted mixed-effects model, we should check whether 

the underlying distributional assumptions are valid for 

the data. There are two basic distributional assumptions 
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Fig. 3: Studentized residuals for the fixed-effects model (left) and mixed-effects model (right) 

 

for the mixed-effects Richards model considered in this 
study: The within-group errors are independent and 
identically distributed, with mean zero and variance σ2 

and they are independent of the random effects; The 
random effects are normally distributed, with mean zero 
and variance σ2

i (not depending on the group) and are 
independent for different groups. 

Scatter plots of Studentized residuals is showed in 
Fig. 3. It indicates that the residuals are approximately 
centered at zero, though we observe several outlying 
observations and large residuals.  

Normal plot of estimated random effects was used 
to investigate departures for the assumption of 
normality of random effects (Fig. 4). 

Parameter estimates and fit statistics for basic and 
mixed models are presented in Table 4. Compared to 
the basic model, the mixed-effects model showed the 
better performance with the lower bias, RMSE and 
higher R2. The performance of the mixed model was 
also visualized by displaying the predicted and 
observed values in the same tree (Fig. 5). Both the 
fixed-effects model with random effects set to zero and 
mixed-effects model are compared. Diameter growth 
predictions for all trees obtained from the fixed-effects 
model differ substantially from the actual diameter. The 
mixed-effects model more closely followed the actual 
values for most trees and indicated that mixed effects 
model described the diameter growth data well. 
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Fig. 4: Normal plot for the estimated random effects 
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Fig. 5: Predicted versus actual diameters (circle) with (solid lines) and without (dotted lines) random parameters 
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CONCLUSION 

 

In this study, a nonlinear mixed-effects diameter 

growth model was developed for dahurian larch in 

northeastern China. Nonlinear mixed-effects modeling 

techniques were used to estimate fixed and random-

effect parameters for Chapman-Richards model. The 

results showed that the Chapman-Richards model with 

three random parameters was found to be the best in 

terms of goodness-of-fit criteria. The mixed-effects 

model provided better model fitting and more precise 

estimations than the fixed-effects model. The fixed-

effects parameters alone can be used to obtain the mean 

diameter curve for dahurian larch plantation based on 

all trees sampled from the population of plantation in 

Dailing forest bureau. The random parameters for a tree 

of interest could be predicted with an approximate 

Bayes estimator of bk using the diameter and age 

measurements from that tree together with estimates of 

the fixed-effects parameters, the residual variance and 

the estimated variance-covariance matrix for the 

random-effects parameters. 

The developed models can be implemented in 

forest inventories by measurement of two tree heights 

per plot. The process of calibration apparently 

accounted indirectly for effects of stand density on the 

height-diameter relationship. The estimate of random-

effects parameters makes the inclusion of additional 

predictor variables in the model unnecessary for many 

forest inventory applications that consider measurement 

of sub-sample trees. In addition, the use of the mixed-

effects model through a sub-sample of trees for height 

measurement allows maintenance of a simple model 

structure without including additional predictor 

variables.  

It should be recognized that the data used in this 

study were collected from a narrow geographic range, 

severely restricting the use of the model. Thus, caution 

should be used when extrapolating beyond the natural 

range of the data on which the model is based. 
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