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Abstract: This study presents a square root version of extended kernel recursive least square algorithm.  Basically 
main idea is to overcome the divergence phenomena arise in the computation of weights of the extended kernel 
recursive least squares algorithm. Numerically stable givens orthogonal transformations are used to obtain the next 
iteration of the algorithm.  The usefulness of the proposed algorithm is illustrated by discussing its application on the 
nonlinear multipath fading channel equalization based on Rayleigh distribution. Experiments are performed on slow 
fading Rayleigh channel with scattered signals. 
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INTRODUCTION 

 
Kernel methods became very popular in the past 

decade because of their firm mathematical foundation 
and broadly used glorious applications. Powerful 
nonlinear extensions to linear algorithm in RKHS have 
been made in the recent past which includes support 
vector machines, kernel principal component analysis, 
kernel least mean square, affine projection algorithms, 
kernel Adaline, normalized, leaky and Quantized 
KLMS (Haykin, 1998, 1996; Frieb and Harrison, 1999). 
Successful applications for the kernel based algorithm 
have been reported continuously in the various fields of 
signal processing for instance time series prediction, 
protein and DNA analysis, equalization of nonlinear 
channels, pattern recognition, regression and many 
more. Recently recursive least squares (Engel et al., 
2004, 2008) in RKHS have been developed and 
extension to this algorithm have made through L2-norm 
regularization (Vaerenbergh et al., 2006) to improve 
generalization referred as Sliding Window Kernel 
Recursive Least Squares (SWKRLS) algorithm. Least 
but most important extended recursive least squares 
algorithm in RKHS has been developed recently by Liu 
et al. (2009). This development will be extremely 
useful due to the close relationship between Ex-RLS 
and Kalman filter. After development of Ex-KRLS in 
RKHS, a new research line has been formed which 
leads to the formulation of nonlinear kalman filter. 
Different nonlinear extensions towards kalman filter 
have been developed so far in the literature, which 
includes extended, unscented and cubature kalman 
filter. These filters use either linearization or sampling 
method at each iteration for state estimation. Where, in 
Ex-KRLS the weights of the kernel regressor is 

obtained by using kalman filter with state transition 
process.  

Many of the fast recursive algorithms suffer 
numerical stability issues, which typically or in some 
sense inborn from the parent algorithms. For example, 
the recursive least squares algorithm provides solution 
of the normal equation by obtaining inverse of 
correlation matrix as a difference of two correlation 
matrices. This difference may lose its positive definite 
characteristic (Sayed, 2003). Same is the case with the 
kernel RLS algorithm. After computation of the inverse 
of the correlation matrix in the feature space, numerical 
difficulties may arises, which results in unstable 
behavior and finally approaches towards divergence 
(Vapnic, 1995). In kernel methods the issue of negative 
definiteness is almost vanished, because they use 
Gaussian and tangent hyperbolic function to transform 
the incoming data. But the problem arises when the 
state error correlation matrix  S��� is computed; there is 
a possibility that the resultant matrix will violate the 
symmetry and nonnegative property. The hypothesized 
general nonlinear state space model given by Liu et al. 
(2010) formulate the base for the derivation of 
algorithm. 

         ���	 = Ax + n         y = φ�u��x + v 
 

which  is  similar  to  the  model  Ex-RLS (Engel et al., 

2004) except the input u��� after transformation in the 

feature space becomes φ���� ∈ ℱ. ���� Also now lies in 

the infinite dimensional feature space. Where the state 

transition operator has the form  A = αI. The detail of 

the algorithm is. 
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Extended Kernel Recursive Least Squares (Ex-RLS) 
algorithm: Initialize the algorithm by setting 
 S�0� = λ

��I ��1� = |α| λ�� + " K�1� = |α| λ� " + λ��$�u�1�, u�1�� 

Iterate for � = 2,3,4, … … … *+  ,��� = "� + -�u, u� − h����z�i� 2��� = 3��� − h����w�i − 1� 5��� = 6αw�i − 1� − αz�i�e�i�r���i�αe�i�r���i� 9 

 K�i� = |α|  6K�� − 1� + :���:���;,����� −��� − 1�:���,�����−��� − 1�:���,����� � �� − 1�,����� 9  

  

•••• Proposed methodology: Our goal here in this 
research study is to present computationally 
convenient square root form of the ex-KRLS. In 
riccati recursive equation the state error correlation 
matrix may result in non-negative definite. To 
resolve this issue we apply cholesky factorization 
which greatly helps us in removing the nonnegative 
definite character of the state error correlation 
matrix. Stable givens orthogonal transformations 
are then used to obtain the next iterations of the 
algorithm, which greatly helps us in achieving 
numerical stability and also to overcome the 
divergence.       
 

Square root Ex-KRLS: we introduce here square root 

extended kernel recursive least squares algorithm. 

Riccatti equation obtained from the formulation of Ex-

kRLS is written as: 

 S��� = |<|  =S�� − 1� − >�����?�@A�?�@A�B>�����C��� D +  "�EI          (1) 

 

Start with cholesky factorization of riccatti 

equation the state error correlation matrix S��� 

propagated in its square root form, according to which: 
 S��� = S����/ S����/                                           (2)        

                  

where, the term reserved for the lower triangular matrix 

is S����/  and the transposed term is G����/  is upper 

triangular matrix.  The matrix product written in the 

above equation never became negative definite, because 

the product and its transpose is always nonnegative 

definite (Pokharel  et al., 2009). And generally square 

root form of the correlation matrix is generally better 

than the original one in terms of numerical errors. 

 
L-by-L matrix: correlation matrix of the predicted 

state error S�� − 1�    

L-by-1 vector: Transformed input vector φ�u� 
 

Scaler term: variance of the innovation or state error 

process "� + φ��u�S�� − 1�φ�u� 
By keeping in view the dimensionalities of the 

three terms we may order as:   

 H�J� = K"� + φ��u�S�� − 1�φ�u� λ��/ φ�u��S�� − 1�λ��/ S�� − 1�φ�u� λ��S�� − 1� L (3) 

 

And can be explained in the factored form as: 

 

H�J� = M" � φ�u��S� �� − 1�0 λ�� S� �� − 1� N 

K "�/ 0;S�/ �� − 1�φ�u� λ��/ S�/ �� − 1�L               (4)        

 

The matrix product stated on the right hand side of 

the equation 4 may be viewed as the matrix product O 

and its transpose X�. Now the stage is possibly set for 

invoking the matrix lemma stated earlier, according to 

which 

 K"�/ φ�u��S�/ �� − 1�0 λ��/ S�/ �� − 1� L Θ = 63�� 0;y � Y  9       (5) 

 

where, Θ an orthogonal matrix, operates on X. In such a 

way that resulting matrix Y bearing a lower triangular 

structure having all its elements above the main 

diagonal are zero. Invoking orthogonality of 

transformation matrix Θ. We may write the above 

equation as: 

 

S��T� = UV��� ⋮ ⋮⋯ cos\��T� ⋯ ]�J\��T�⋯⋯ ⋮            V̂ ��−]�J\��T� ⋯ ⋮cos\��T�_ 

�� = 1,2,3,4, … … … … . . . , a� 

 �a + 1� × �a + 1� Identitiy matrix Vc�� the elements at 

the position ��, ��, ��, a + 1�, �a + 1, ��dJ* �a + 1, a +1�. The rotation angle S�   is carefully chosen to 

annihilate the elements at the position �a + 1, �� of the 

matrix to which givens rotation (Golub et al., 1996) 

applied. By following this procedure φ����S�/ �� − 1� 

will be eliminated term by term:  
 

M" � φ�u��S� �� − 1�0 λ�� S� �� − 1� N
X  
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M " � 0;
P� �� − 1�φ�u� λ�� S� �� − 1�N

X�  

= 63�� 0;y � Y  9Y K3�� y ��0 Y  �LY�  

 

We proceed by comparing terms and expanding 

products on both sides of the equalities to get the 

identities: 

 f�� = ,����/ , y � = g���,���hi,  and Y  = S�i��/    (6) 

 

The equations defined in 6, now distinguishes 

between two arrays of numbers, which deserves close 

resemblance. 

 

Prearreay: the array of numbers on the left side of Eq. 

(2) is operated on by the orthogonal transformation, that 

is designed to annihilate the vector term λ�hiφ����S�� −1� element by element.  

 

Postarray: The second array of numbers, on the right 

hand side of Eq. (2) will be a lower triangular matrix 

that results from the annihilation performed by the 

orthogonal rotation in the prearray.  The scalar term in 

the prearray induces the generation of two useful terms: 

Square root of the mean square error covariance 

term ,����/  and the vector product g�i�,����/  which 

makes possible in computing the gain vector.  

Detail summary of Square Root Extended Kernel 

Recursive Least Squares (sqrEx-kRLS) Algorithm. 

Initialize the algorithm by setting: 

 S�0� = λ�/ I 
 

•••• Given parameters: 

Transition matrix A = αI 
Transformed input vector φ�u� 

Input correlation matrix R����/  

 

•••• Parameters to be updated: 

Predicted estimate of the weight vector: 5�� − 1� 

Predicted square-root state-error correlation matrix S�i − 1��/  
 

•••• Transformation from the prearray to postarray. 

 

m1 φ�u��S� �� − 1�0 λ�� S� �� − 1� n Θ 

= K ,����/ 0;g�i�,����/ S�i��/ L 

•••• Updated parameters: 

 2��� = *��� − h����c�i − 1� ,��� = "� + φ��u�S�� − 1�φ�u� S��� = S����/ [S����/ ]� 5��� = <5�� − 1� + g���e��� 

 

As the computation of the matrix S�� − 1� will play 

an important role in the development of the 

innovation,���. By reproducing the lemmas given in 

Liu et al. (2010), greatly helps us solving these values, 

 

Lemma 1: The matrices S��� of the reccatti recursive 

equation are of the following form. 

 S�-� = ��-�I − M�-�Q�-�M�-��  
 

Where the term ��-�, Q�-�, M�-� a scalar, s × s real 

valued and input matrix respectively. 

 

Proof:  Start with the equation: 

 S�0� = λ��I ,�1� = " + t-���1�, ��1�� S�1� = K|<| t + "L I − φ�1� K |<| t� β + λ��-�u�1�, u�1��L φ�1�� 

 

If the claim is valid for - = 1, then by induction, 

assuming that it is true for - = � − 1, 

Substituting the above value of S�1� in the recursive 
equation of the algorithm, we have: 
 S��� = �|<| ��� − 1� + "��I − |<| ,�����M��� KK�� − 1�,��� + z���z���� −��� − 1�z���−��� − 1�z���� � �� − 1� L M���� 

 
The terms in the above equation are defined as: 

 ���� = |<|v��� − 1� + "�                             (7) 
 -��� =  |<| wxh ���[-�� − 1�,���:���;] −E�� − 1�:��� − ��� − 1�:���;� �� − 1�              (8) 
 S��� = ����I − M���Q���M����                            (9)    

                                         

By applying cholesky decomposition we can split 

the matrix S��� in upper and lower triangular matrix S����/  and S����/  respectively. The term ,��� will be 

computed as: 

 ,��� = "� + φ��u�S�� − 1�φ�u� ,��� = "� + φ��u�[��� − 1�I − M�i − 1� K�i − 1�M�i − 1��]φ�u�,��� = "� +��� − 1�-y����, ����z − m����z���                   (10) 
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The weight vector which lies in a high dimension 

feature space can be expressed as discussed (Liu et al., 

2008) in the next lemma: 

Lemma 2: Start with initial weights 5�0� = 0, 

 5�1� = 5�0� + g�1�2�1� 5�1� = 0 + |}xh~?�������C���                                    (11) 

 

Then by induction, assuming that it is true for  � − 1. We pursue as: 

 5��� = 5�� − 1� + g���2��� 5��� = <M�� − 1�c�� − 1� +<S�� − 1�φ���2���,����� 

 

By putting the value of S�� − 1� from lemma 1 we 

have: 

 5��� = <M�� − 1�c�� − 1� + <[��� − 1�I −M�� − 1�K�� − 1�M�� − 1��]φ���2���,����� 

 

 5��� = [M�� − 1� φ���] 6<c�� − 1� − <z���e���,�����<��� − 1�2���,����� 9                          (12)    

                           

Weight vector described in Eq. (12) simplifies the 

computation of the weights of square root kRLS. The 

proposed algorithm is tested for the equalization of 

nonlinear channel discussed briefly in the simulation 

section.  

 

SIMULATIONS AND  

EXPERIMENTAL RESULTS 

 

We apply square root extended kernel recursive 

least square  filter to the problem of tracking a 

nonlinear  Rayleigh   multipath   channel   and  compare     

its performance with the Ex-KRLS filter. We assumed 

traditional nonlinear Rayleigh fading channel, 10 paths 

have been chosen for this experiment with 15 assumed 

numbers of scatters. 500 symbols are assigned to run 

the experiment with maximum Doppler’s frequency of 

50 Hz. Sampling rate of 6� seconds is chosen for all 

scattered paths. Channel matrix of specified dimensions 

are created and passed through the noise (AWGN) with 

variance 0.001. The kernel type taken here in this 

experiment is Gaussian with � = .05. 500 symbols are 

used for the experiment and all the coefficients of the 

channel matrix are obtained assumed to be real. Mean 

square error has been plotted to show the effectiveness 

of the proposed square root Ex-RLS. (Fig. 1) 

The experiment is tested on two algorithms. The 

first one is Ex-KRLS filter and the second algorithm is  

the proposed square root Ex-KRLS filter. The 

experimental result clearly shows that there is an 

improvement of approximately 3dB in terms of mean 

square error, will be observed while using square root 

Ex-RLS filter and it outer performs its Ex-KRLS and 

enjoys better performance in terms of mean square 

error. Scattered multipath channel input signal is 

demonstrated in the next result.   

Details of the parameters of the filter used in the 

experiment: 

 

Extended kernel recursive least squares algorithm: 

Kernel type: Gaussian 

Kernel parameter: 0.05 

Transition matrix: A = αI, α = 0.9999 

Forgetting factor: " = 0.999 

Regularization parameter: t = 0.01 

 

Square root extended kernel recursive least squares 

algorithm: 

Kernel type: Gaussian 

 

 
 

Fig. 1: Mean square error analysis 
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 Fig. 2: Waveform of the Rayleigh fading channel 

 

 
 

Fig. 3: Weights of the Ex-kRLS 

 

 
 

Fig. 4: Weights of the square root Ex-kRLS 
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Kernel parameter: 0.05 

Transition matrix: A = αI, α = 0.9997 

Forgetting factor: " = 0.9 

Regularization parameter: t = 0.001 

 

The performed experiment is tested on two 

algorithms. The first one is Ex-RLS filter and the 

second algorithm is the proposed square root Ex-KRLS 

filter. The experimental result clearly shows that there 

is an improvement of approximately 3dB in terms of 

mean square error, will be observed while using square 

root Ex-RLS filter and it outer performs its Ex-KRLS 

and enjoys better performance in terms of mean square 

error. Scattered multipath channel input signal is 

demonstrated in the next result.   

Figure 2 demonstrates the response of a slow 

fading nonlinear Rayleigh channel with number of 

multipath is chosen as M = 10. Only the real 

coefficients are used in this experiment. With Doppler’s 

frequency of 50 Hz and the sampling rate of 6� 

seconds. In Rayleigh fading model several objects 

disperse the radio signal before it reaches at the 

receiver. In our model we assume 15 no. of scatterers.  

Figure 3 and 4 demonstrates the weights of both 

the algorithms, Ex-kRLS and sq.root Ex-kRLS. Which 

clearly support our claim? Figure 4 shows the weights 

of the proposed algorithm. The weights of the square 

root algorithm achieve stable behavior in last 200 

iterations.  

 

CONCLUSION AND RECOMMENDATIONS 

 

In this study, a new square root extended kernel 

recursive least square algorithm is proposed based on 

cholesky decomposition and givens rotation. In order to 

overcome the problem of divergence in the weights of 

Ex-kRLS, the concept of square root filtering is applied 

in this study. The proposed algorithm is tested on 

nonlinear Rayleigh fading channel equalization 

problem illustrates that proposed square root Ex-kRLS 

algorithm achieves better tracking performance in 

comparison with the Ex-kRLS. The learning curves of 

the weights of both the algorithm are observed, which 

clearly demonstrates that proposed algorithm achieve 

early after the few no. of iterations to a stable state 

while the other didn’t achieve its stable state throughout 

the iterations. Kernel algorithm gives better tracking 

performance in comparison with their linear 

counterparts, but this superiority is availed at the cost of 

greater computation complexity. Square root kernel 

RLS should be tested in the future for nonlinear 

problems.  
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