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Abstract: D-S evidence theory is widely applied to the fields of information fusion, pattern recognition, decision 
analysis and other fields. When information are given as interval numbers with high conflicting evidences, 
traditional combinations rules may result in antinomy that some evidences are discarded while conflict factor is zero. 
To avoid this inconsequence, a method of disjointing algorithm is proposed to reallocate the focal elements and their 
basic probability assignments for intersecting intervals. Then the weighted average method is used to combine the 
evidences. Simulation results show that the proposed method can get more reasonable results in combining interval-
valued evidences. 
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INTRODUCTION 

 
D-S evidence theory was initially developed by 

Dempster (1967) and formalized by Shafer (1976). 
Evidence theory is a convenient framework for 
modeling imperfection in data and for combining 
information. As a theory of uncertain information 
processing, evidence theory has been widely used in 
data  fusion  (Sevastianov  and   Dymova, 2009; Deng 
et al., 2011), pattern recognition (Perrin et al., 2004; 
Liu et al., 2008), decision analysis (Kanoksri and 
Miroslav, 2008; Ludmila and Pavel, 2010), uncertainty 
quantification (Aven, 2011; Xie et al., 2010) and other 
fields (He et al., 2007; Basir and Yuan, 2007; Thomas 
and Olivier, 2011).  

Combination rule plays a central role in evidence 
theory. It can combine the information from different 
sources and obtain more reliable results. The most 
famous combination rule is Dempster’s rule. But 
researchers found it had some weaknesses, particularly 
in the conflict evidence combination. Therefore, many 
scholars put forward their solutions (Yager, 1989; 
Inagaki, 1991; Lefevre and Colot, 2002; Murphy, 2000; 
Huynh and Murai, 2006). However, the combination of 
interval-valued evidences was very few reported. Most 
of the studies were dealing with focal elements of point 
sets. Only in reference (Kari, 2003), combination of 
interval-valued evidences was discussed. But in Kari 
(2003), the high conflicting problem for interval 
numbers was not studied. In reality, interval number is 
an important type of evidence in probability analysis, 
reliability evaluation and logistics supply chain 

management (Jim and Jonathan, 2004; 
Oberguggenberger and Fellin, 2008; Wang and Hsu, 
2010), etc. 

When focal elements are interval numbers, the 
relationship between them is not only equality, 
containment, but also intersection in some occasions. 
Then it may fall into contradiction that conflict 
coefficient is zero while the combination results discard 
some evidences, which details will be discussed in rests 
of the paper. That means the existing combination rules 
are not suitable completely for interval focal elements, 
especially when there are conflictions among the 
evidences. So the motivation of this research work is to 
propose a more robust method to solve the conflicting 
problem of interval-valued evidences. 

 
EVIDENCE THEORY 

 
Evidence theory is a convenient framework for 

modeling imperfection in data and for combining 

information. In this section, the basic notations of 

evidence theory are introduced and the main concepts 

that are necessary to understand the rest of the paper are 

briefly recalled. 
A basic measure in evidence theory is a BPA 

(Basic Probability Assignment) (Dempster, 1967). Let 

Θ be a finite set of mutually exclusive and exhaustive 

hypotheses, called the frame of discernment. Let 2
Θ
 be 

the set of all subsets of Θ. For a given evidential event 
A, BPA is represented by m(A), which defines a 

mapping of 2
Θ
 to the interval between 0 and 1, i.e., 
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m:2
Θ→[0,1]. m(A) expresses the proportion of all 

relevant and available evidence that supports the claim 

that a particular element of Θ belongs to the set A and 
has no additional claims about any subsets of A. The 
value of m(A) only belongs to the set A and makes no 
additional claim about any subsets of A. For example, if 

B ⊂ A, then m(B) is another BPA. Generally, m(A) must 
satisfy the following constraints: 
 

( ) 0m A ≥  for all 2A Θ∈                (1)  

 

( ) 0m ∅ =                                            (2) 

 

2

( ) 1
A

m A
Θ⊆

=∑                                            (3) 

 

Evidence theory uses two measures, belief (Bel) 

and plausibility (Pl), to characterize uncertainty. For a 

set A, Bel is defined as the sum of all the BPAs of the 

proper subsets (B) of the set of interest (A) ( B A⊆ ). Pl is 

the sum of all the BPAs of the sets (B) that intersect the 

set of interest (A) ( B A∩ ≠ ∅ ). For a set, A, in the power 

set (A∈2
Θ
): 

  

( ) ( )
B A

Bel A m B
⊆

= ∑                              (4) 

 

( ) ( )
B A

Pl A m B
∩ ≠∅

= ∑                              (5) 

 

These two functions can be derived from each 

other. For example, belief function can be derived from 

plausibility function in the following way: 

 

( ) 1 ( )Bel A Pl A= −                              (6) 

 

The relationship between belief and plausibility 

functions is: 

 

( ) ( )Bel A Pl A≤                              (7) 

 

Equation (4) shows that as a measure of “event A 

is true”, if P(A) is the true value of the measure of set 

{A is true}, then Pl(A) is the upper bound of P(A) and 

Bel(A) is the lower bound. So: 

 

( ) ( ) ( )Bel A P A Pl A≤ ≤                (8) 

 

CONFILICTING PROBLEM OF COMBINATION 

RULES FOR INTERVAL NUMBERS 

 

Dempster’s rule is the classical approach for 

evidence combination, but it is not ideal for conflicting 

evidences. Yager, Inagaki and  other  researchers  made  

Table 1: BPAs of x 

Evidence source A m(A) 

1 [1.0,1.5] 0.9 

[1.0,2.0] 0.1 

2 [1.0,1.5] 0.9 

[1.0,2.0] 0.1 

3 [1.0,1.5] 0.9 

[1.0,2.0] 0.1 

4 [1.4,1.6] 0.9 

[1.4,2.0] 0.1 

 
Table 2: The combination results of Dempster’s rule 

K A m(A) 

0 [1.4,1.5] 0.9990 

[1.4,2.0] 0.0001 

[1.4,1.6] 0.0009 

 

some improvements on Dempster’s rule and could 

combine conflicting evidences with more reasonable 

results. However, all of above methods have weak 

points when combine interval-valued evidences. 

 

Example 1: There 4 independent evidence sources to 

support parameter x, as shown in Table 1.  

Combination rules of Dempster, Yager and Inagaki 

will be described below. Then 4 evidence sources will 

be combined with these rules to discover the shortages 

of them. 

 

Dempster’s rule: Let 
1 2, , , nm m mL be n BPAs on a 

frame of discernment,Θ , which focal elements are 

( 1,2, , )iA i N= L . Then
 
(Dempster, 1967; Shafer, 1976): 

 

1

1
( )  A

1( )

             0                    A = 

i

i i
A A i ND

m A
Km A ∩ = ≤ ≤

 ≠∅ −=
 ∅

∑ ∏

                           (9) 

 

where, 

1

( )
i

i i
A i N

K m A
∩ =∅ ≤≤

= ∑ ∏  is the conflict coefficient. If K 

= 0, then there are no conflicts among the evidences; on 

the other hand, if K→1, then there have high level 

conflicts among them. 

Eq. (9) is the Dempster’s rule, in which ( )m A  is the 

confidence level for event A. Now it is used to combine 

the 4 evidences in example 1 and get the conflict 

coefficient K = 0, which shows there are no conflicts 

among the evidences. The combining results are shown 

in Table 2. 

From Table 1 and 2 it can be seen that: 

 

• The first three evidence sources argue that 

parameter x is included in the interval [1.0, 2.0]. 

However, the fourth evidence source declares that 

x∈[1.4, 2.0]. So the combined result is [1.4, 2.0]x∈  

and the interval [1.0, 1.4] is discarded directly. 
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Obviously, the result is inconsistent with that the 

conflict coefficient K is 0 

• The combined result is reasonable in the respect of 

enhancing the confidence level for [1.4,1.5]x∈ . 

Even most of the evidences declare that x is falling 

in the interval [1.0, 1.4] with some probability, the 

declaration is rejected even though only one 

evidence source is not agree with the others. This 

phenomenon is so called “one-vote negation”. It 

may be reasonable in some cases, but in some 

occasions, such as risk evaluation, decision 

analysis, such “one-vote negation” may result in 

unsafe results. 

 

Yager’s rule: To solve the problem that Dempster’s 

rule involved counter-intuitive behaviors when 

evidence highly conflicts, Yager made some 

improvements on Dempster’s rule (Yager, 1989). 

Let 
1 2, , , nm m mL

 
be n BPAs on a frame of 

discernment, Θ, which focal elements are ( 1,2, , )iA i N= L . 

Then: 

 

1

1

( )        ,

( ) ( )  

0                             =

i

i

i i
A A i N

Y i i
A A i N

m A A

m A m A K A

A

∩ = ≤ ≤

∩ = ≤ ≤

≠ ∅ Θ



= + = Θ

 ∅

∑ ∏

∑ ∏

                    (10) 

 

where, 

1

( )
i

i i
A i N

K m A
∩ =∅ ≤≤

= ∑ ∏  is the conflict coefficient. If K 

= 0, then there are no conflicts among the evidences; on 

the other hand, if K→1, then there have high level 

conflicts. 

If there are no conflicts, the combination results are 

same as Dempster’s. But in Yager’rule, instead of 

normalizing out the conflict in Dempster’s rule, it 

ultimately attributes conflict to the universal set Θ  

through the conversion of the ground probability 

assignment to the basic probability assignments. The 

interpretation of the BPA of Θ  is the degree of 

ignorance. Yager deemed that as it could not make a 

reasonable choice for conflict evidences, it should take 

them as uncharted territory. This is an 

epistemologically honest interpretation of the evidence 

as it does not change the evidence by normalizing out 

the conflict. 

The combination results of Yager’s rule are shown 

in Table 3. 

Obviously the results are the same as that of the 

Dempster’s rule and cannot solve the issue of conflict. 

 

Inagaki’s rule: Inagaki defined a continuous 

parameterized   class   of    combination    rules    which  

Table 3: The combination results of Yager’s rule 

K A m(A) 

0 [1.4,1.5] 0.9990 

[1.4,2.0] 0.0001 
[1.4,1.6] 0.0009 

 
Table 4: The combination results of Inagaki’s rule 

K A m(A) 

0 [1.4,1.5] 0.999 
[1.4,2.0] 0.0001 

[1.4,1.6] 0.0009 

 

subsumes both Dempster’s rule and Yager’s rule 

(Inagaki, 1991).  

If 
1 2, , , nm m mL  are n BPAs on a frame of 

discernment,Θ ,which focal elements are ( 1,2, , )iA i N= L , 

then Inagaki’s rule, the combined ground probability 

assignment is defined as the combination of n BPAs as: 

 

1

( ) ( )
i

i i
A A i N

G A m A
∩ = ≤ ≤

= ∑ ∏
                           (11) 

 

Then Inagaki argued that every combination rule 

could be expressed as: 

 

( ) ( ) ( )( )
( ) ( )( ) ( )( ) ( )

0                                                                      

1                                           ,

1 1     

I

A

m A G A kG A

G A kG kG k G A

 =∅

= + ∅ ≠∅Θ


+ ∅ + + ∅ − ∅ =Θ    (12) 

 

where, parameter k was used for normalization and 

satisfied the following constraint: 

 

( ) ( )
1

0
1

k
G G

≤ ≤
− ∅ − Θ

                           (13) 

 
In Inagaki’s rule, conflicting and unknown 

evidences are all reassigned and the reassigned factors 
depend on the parameter k. Generally, k can be 
determined through experimental data, simulation, or 
the expectations of an expert in the context of a specific 
application. When k = 0, the unified combination rule 
coincides with Yager’s rule. When k = 1/(1-G(Ø)), the 
rule corresponds to Dempster’s rule. When k is equal to 
its upper bound, then the most extreme rule availed by 
the formulation is: 
  

( ) ( ) ( )
( ) ( )

( )

0                                          

1
   ,

1

                                    

I

A

G
m A G A A

G G

G A A

 = ∅


 − Θ
= ≠ ∅ Θ   − Θ − ∅ 
 = Θ            (14) 

 

If Inagaki’s rule is used for the combination of 

example 1, then ( ) 0G ∅ =  and combination results are 

shown in Table 4, which are the same as that of the 

Dempster’s rule and Yager’s rule and also cannot solve 

the issue of conflict. 
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A NOVEL COMBINATION RULE FOR 
INTERVAL-VALUED EVIDENCE 

 
As discussed above, Dempster’rule, Yager’s rule 

and Inagaki’s rule all fall into the contradiction that 
conflict coefficient is zero while the combination 
results discard some evidences when combine the 
evidences in the example 1. All the combination results 
are not satisfying. Generally, evidences are described as 
point sets. Evidences in different sources are always 
inclusion or equal relations, then the combination 
results with Yager’s rule or Inagaki’s rule are always 
reasonable. However, in interval-valued evidences, the 
upper and lower bounds of interval focal elements are 
often not equal and they are always intersection 
relations. In these cases, using abovementioned three 
combination rules may get unreasonable results. This is 
the root cause of the contradiction in the combination of 
conflicting evidences. 

To get more reasonable combination results for 
interval-valued evidences with the existing rules, focal 
elements with intersection relations should be translated 
to equal or inclusion relations first. 

If there are n evidence sources and the focal 

elements of the i-th source are 1 2, , , ir

i i iA A AL , 

respectively, where _ _[ , ]j l j u j

i i iA a a= . Then the 

disjointing algorithm is described as follows: 

 

• Comparing the j-th focal element 1

jA  in the first 

evidence source with k-th focal element 

2 2(1 )kA k r≤ ≤  in the secondary evidence source. If 

1 2

j k
A A⊄  and 

2 1

k j
A A⊄ , denote _

1 2 [ , ]j k j u

iA A b a∩ = (or 

_

1 2 [ , ]j k j l

iA A a b∩ = ), in which _ _

1 1[ , ]
l j u j

b a a∈ , then 
1

jA
 

is divided into two focal elements, 1 _

1 [ , ]j j l

iA a b=  and 

2 _

1 1[ , ]j u jA b a= , which BPAs are: 

 
1 _ _ _

1 1 1 1( ) ( ) ( ) / ( )
j j l j l j u j

im A b a m A a a= − ⋅ −
            (15) 

 
2 _ _ _

1 1 1 1 1( ) ( ) ( ) / ( )j u j j l j u jm A a b m A a a= − ⋅ −
          (16) 

 

• Repeating the step 1 for j = 1 to j = r1, then the 

disjointing operations between the first and second 

evidence sources are completed 

• Repeating the step 1 and 2, do the disjointing 

operations for the first evidence source to the other 

1n −  sources 

• Do the disjointing operations for the second 

evidence source to the other 2n −  sources and so 

on. Then the disjointing operations are done for all 

the interval focal elements. 

 

After the disjointing operations, the relation 

between any two focal elements is equation or inclusion 

and the BPA of each focal element is reallocated.  

Then, with the concept of distance between 

evidences which proposed by Jousselme et al. (2001), 

evidences with high conflicts are modified and more 

credible results are obtained. 

If mi and mj are two BPAs in Θ , which focal 

elements are Ai and Bj then the distance between mi and 

mj are: 

 

1
( , ) ( ) ( )

2
i j i j i jd m m = − −m m D m m

                 (17) 

 

where, 
1 2 2

[ ( ), ( ), ( )]ni i im A m A m A=
i
m L  and D  is a matrix 

with 2 2n n×  elements, each element is: 

 

( , )  , 1, 2 , 2
i j n

i j

i j

A B
A B i j

A B

∩
= =

∪
D L

            (18) 

 

where, |�� ∩ ��| shows the conflict and similarity 

between Ai and Bj. If |�� ∩ ��| = 0, then the similarity 

between between Ai and Bj is 0 and the conflict is the 

biggest; otherwise, if ��� ∩ ��� =  1, then the similarity 

between between Ai and Bj is 1 and there is no conflict 

between them. 

From Eq. (17) and (18), the formula of distance 

between mi and mj is: 

 

( )221
( , ) 2 ,

2
i j i j i jd m m = + −m m m m

                 (19) 

 

where,  

 
2

,i i i=m m m
, 

2

,
j j j
=m m m

 and 
,i jm m

  

 

is the inner product: 

 

2 2

1 1

, ( ) ( )  

n n

i j

i j i i j j

i j i j

A B
m A m B

A B= =

∩
=

∪
∑∑m m

       (20) 

 

If there are r evidence sources, then all the 

distances between each two evidences is a matrix of: 

  

12 1

21 2

1 2

0

0
 

1

r

r

M

r r r r

d d

d d

d d
×

 
 
 =
 
 
 

D

L

L

M M M

L
             (21) 

 

The similar coefficient between mi and mj is 

defined as: 

 

1ij ijs d= −
                                                       (22) 
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Table 5: BPAs after disjointing operations 

 A B C B,C,D Θ 

m1 0.72 0.18 0.00 0.00 0.1 

m2 0.72 0.18 0.00 0.00 0.1 

m3 0.72 0.18 0.00 0.00 0.1 

m4 0.00 0.45 0.45 0.1 0.00 

 
Table 6: The combination results of proposed method 

m(A) m(B) m(C) m(B,C,D) m(Θ ) 

0.8796 0.1142 0.0046 0.0008 0.0008 

 

Eq. (22) shows that the smaller the distance, the 

bigger the similarity between two evidences. So the 

similarity matrix of all evidence is: 

 

12 1

21 2

1 2

0

0
 

1

r

r

M

r r r r

s s

s s

s s
×

 
 
 =
 
 
 

S

L

L

M M M

L
             (23) 

 

Sum each line of SM and the support degree of 

other evidences to mi is: 

 

1

( )   ( , 1,2, , )
r

i ij

j

spt m s i j r
=

= =∑ L

             (24) 

 

Normalize Eq. (24) and get the weight of i
m  as: 

 

1

( )
  ( , 1, 2, )

( )
i r

i

spt
i j r

spt

ε

=

= =

∑
i

i

m

m

L

                         (25) 

 

Then a weighted average method is used to get the 

new evidences (Murphy, 2000). As there are r evidence 

sources, there will be r-1 times of weighted average 

process. 

 

NUMERICAL EXAMPLES 

 

The proposed disjointing algorithm is used for 

example 1 first. The new focal elements are get as 

[1.0,1.4]A=  [1.4,1.5]B = ， [1.5,1.6]C = ， [1.6,2.0]D= , 

and Θ = {A, B, C, D}. BPAs of the focal elements 

after disjointing operations are shown in Table 5. 

From Table 5, the conflict coefficient is K = 

0.98747, which means they are high conflicting 

evidences. Obviously, the value of K is quite different 

with the result that has no disjointing operation (i.e., K 

= 0). The new value of K is consistent with intuitive 

judgment. From Eq. (19)~(21), DM is calculated as: 

 

0 0 0 0.6507

0 0 0 0.6507
 

0 0 0 0.6507

0.6507 0.6507 0.6507 0

M

 
 
 =
 
 
 

D

 

Then SM is: 
 

1 1 1 0.3493

1 1 1 0.3493
 

1 1 1 0.3493

0.3493 0.3493 0.3493 1

M

 
 
 =
 
 
 

S

 

 
From Eq. (24) and (25), weights of four evidence 

sources are: 
  

[0.2769,0.2769,0.2769,0.1693]=ε  

 
By weighted average method, the combined results 

are obtained, as shown in Table 6. 
Contrast Table 2 to 4 with Table 6, it can be seen 

that the proposed method avoids the contradiction that 
conflict coefficient is zero while the combination 
results discard some evidences. K = 0.98747 shows that 
evidences in example 1 are high conflicting. In Table 6, 
conflicting evidence A ( [1.0,1.4]A = ) is reserved, which 

avoid to get unsafe or wrong decision when the rule is 
used in risk evaluation, decision analysis and other 
occasions. The results are consistent with intuitive 
judgment. 

 
CONCLUSION 

 
To avoid the contradiction that conflict coefficient 

is zero while the combination results discard some 
evidences for interval-valued evidences, a novel 
combination method is proposed. In the new method, a 
disjointing algorithm is proposed as a preprocessing 
and then a weighted average method is used to combine 
the evidences. The numerical examples show that the 
proposed method can solve the contradiction and get 
reasonable combination results. 
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