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Learning from Adaptive Neural Control of Electrically-Driven Mechanical Systems 
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510640, China 

 

Abstract: This study presents deterministic learning from adaptive neural control of unknown electrically-driven 
mechanical systems. An adaptive neural network system and a high-gain observer are employed to derive the 
controller. The stable adaptive tuning laws of network weights are derived in the sense of the Lyapunov stability 
theory. It is rigorously shown that the convergence of partial network weights to their optimal values and locally 
accurate NN approximation of the unknown closed-loop system dynamics can be achieved in a stable control 
process because partial Persistent Excitation (PE) condition of some internal signals in the closed-loop system is 
satisfied. The learned knowledge stored as a set of constant neural weights can be used to improve the control 
performance and can also be reused in the same or similar control task. Numerical simulation is presented to show 
the effectiveness of the proposed control scheme. 
 
Keywords: Adaptive neural control, deterministic learning, electrically-driven mechanical systems, high-gain 

observer, RBF network 

 
INTRODUCTION 

 
The motion tracking control of uncertain 

mechanical systems described by a set of second-order 
differential equations has attracted the interest of 
researchers over the years. For the mechanical systems 
without the actuator dynamics, many approaches have 
been introduced to treat the motion tracking control 
problem and various adaptive control algorithms have 
been found (Ge et al., 1997; Zhang et al., 2008; Wai, 
2003; Lee and Choi, 2004; Chang and Yen, 2005; Sun 
et al., 2001; Xu et al., 2009; Chang and Chen, 2005). 
However, as pointed out by Tarn et al. (1991) in order 
to construct high-performance tracking controllers, 
especially in the cases of high-velocity movements and 
high varying loads, the inclusion of the actuator 
dynamics in mechanical systems was very significant 
(Tarn et al., 1991). The incorporation of the actuator 
dynamics into the mechanical model complicates 
considerably the equations of motion. In particular, the 
electrically-driven mechanical systems were described 
by third-order differential equations (Tarn et al., 1991) 
and the number of degrees of freedom was larger than 
the number of control inputs. 

Many works addressing the tracking problem of 
mechanical systems with actuator dynamics have been 
described in Dawson et al. (1998), Su and Stepanenko 
(1996, 1998), Chang (2002) and Driessen (2006). These 
works were based on the integrator backstepping 
technique. In backstepping design procedures, 

regression matrix is required and the procedures will 
become very tedious for mechanical systems with 
multiple degrees of freedom. Based on the universal 
approximation ability of Neural Networks (NNs) and 
fuzzy neural networks, adaptive neural/fuzzy neural 
control schemes have been developed to treat the 
tracking control of uncertain electro-mechanical 
systems (Kwan et al., 1998; Huang et al., 2003, 2008; 
Kuc et al., 2003; Wai and Chen, 2004, 2006; Wai and 
Yang, 2008). In Kwan et al. (1998), two-layer NNs 
were used to approximate two very complicated 
nonlinear functions with the NN weights being tuned 
on-line, the designed controller guaranteed the 
Uniformly Ultimately Bounded (UUB) stability of 
tracking errors and NN weights with some conditions. 
In Huang et al. (2003), a NN controller was developed 
to further reduce the conditions in Kwan et al. (1998) 
for the stability. In Huang et al. (2008), an adaptive NN 
control algorithm was proposed for reducing the 
dimension of NN inputs. In Kuc et al. (2003), 
employing three neural networks, the designed 
controller implemented the global asymptotic stability 
of the learning control system. In Wai and Chen (2004, 
2006), robust neural fuzzy network control was derived 
for robot manipulators including actuator dynamics, 
favorable tracking performance was obtained for 
complex robot systems. In Wai and Yang (2008), an 
adaptive FNN controller with only joint position 
information was designed to cope with the problem 
caused by the assumption of all system state variables 
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to be measurable in Wai and Chen (2004, 2006). In the 
proposed adaptive neural control schemes above, NNs 
were used to approximate the nonlinear components in 
the electrically-driven mechanical systems and 
Lyapunov stability theory was employed to design 
closed-loop control systems. However, the learning 
ability of the approximation-based control is actually 
very limited and the problem of whether the neural 
networks employed in adaptive neural controllers 
indeed implement their function approximation ability 
has been less investigated. As a consequence, most of 
the adaptive neural controllers have to recalculate the 
control parameters even for repeating the same control 
task. 

Recently, deterministic learning approach was 
proposed for identification and adaptive control of 
nonlinear systems (Wang and Hill, 2006, 2009). By 
using the localized RBF network, a partial PE 
condition, i.e., the PE condition of a certain regression 
subvector constructed out of the RBFs along the 
recurrent trajectory, is proven to be satisfied. This 
partial PE condition leads to exponential stability of the 
closed-loop error system which is in the form of a class 
of Linear Time-Varying (LTV) systems. Consequently, 
accurate NN approximation of the unknown closed-
loop system dynamics is achieved within a local region 
along the recurrent trajectory. The deterministic 
learning approach provides an effective solution to the 
problem of learning in dynamic environments and is 
useful in many applications (Wang and Chen, 2011; 
Wu et al., 2012; Zeng et al., 2012; Dai et al., 2012). 

This study addresses learning from adaptive neural 
control of the unknown electrically-driven mechanical 
systems. An adaptive neural control algorithm is 
proposed using RBF networks. Partial PE condition of 
some internal signals in the closed-loop system is 
satisfied during tracking control to a recurrent reference 
trajectory. Consequently, the convergence of partial 
neural weights to their optimal values and learning of 
the unknown closed-loop system dynamics are 
implemented in the closed-loop control process. The 
learned knowledge stored as a set of constant neural 
weights can be used to improve the control performance 
and can also be reused in the same or similar control 
task. Compared with back stepping scheme, the 
designed adaptive neural controller only uses one RBF 
network, which significantly reduces the complexity of 
controller, so that our proposed controller can be easily 
implemented in practice. 
 

PROBLEM FORMULATION 
 

Consider the following electrically-driven 
mechanical systems (Tarn et al., 1991; Dawson et al., 
1998; Su and Stepanenko, 1996): 
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where, q(t)∈ R
n
 denotes the angle displacement variable 

vector, M(q)∈ R
n×

  is the symmetric positive ndefinite 

inertia matrix; Vm(q, �� )∈ R
n×n

 
 is the Coriolis and 

centripetal forces matrix; G(q)∈ R
n
 is the gravity 

vector; F(�� )∈ R
n

 
is the dynamic frictional force vector; 

i(t)∈ R
n

 
sis the motor armature current vector and  u(t)∈ 

R
n
 is the control input voltage vector, y ∈ R

n

 
is the 

measurement output vector. Multi-axes mechanical 

systems are driven by the same motor, KT ∈ R
n×n

 
 is the 

positive definite constant diagonal matrix which 

characterizes the electro-mechanical conversion 

between current and torque and KT = kt ln×n 
; L = R

n×n
  

is a positive definite constant diagonal matrix denoting 

the electrical inductance and  L = Iln×n; R(I, �� )∈ R
n
  

represents the electrical resistance and the motor back-

electromotive force vector; and M(q), Vm(q, �� ), G(q), 

KT, L, R(I, �� ), are all unknown. Some fundamental 

properties of mechanical system dynamics are stated as 

follows (Tarn et al., 1991; Dawson et al., 1998; Su and 

Stepanenko, 1996).  

 

Property 1: The Coriolis and centripetal forces matrix 

can always be selected so that the matrix [�� (q) – 

2Vm(q, �� )] is skew symmetric.  

 

Property 2: The inertia matrix M(q) is symmetric, 

uniformly positive definite, for some positive constants 

m2 ≥ m1 > 0, m1 I M(q) ≤ m2I, ∀q ∈ R
n
. 

Let, x1 = q, x2 = q, �� 1 = �� , x3 = i, then Eq.1 can be 

transformed as follows: 
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where, x = [x
T

1, x
T

2, x
T

3]
T
, F2 = - M

-1
(Vm x2 + G + F), 

G2 = M
-1

 KT, F3 = - L
-1

 R, G3 = L
-1

, ,. 

 

Property 3: According to Property 2, )(2 ⋅G is positive 

definite, symmetric and bounded, for some positive 

constants 012 >≥ gg , IgGIg 122 )( ≥⋅≥ , nRx 2⊂Ω∈∀ .  

The objective of the paper is: given a bounded and 

smooth recurrent reference output yd(t), to design an 

adaptive neural controller using the localized RBF 

networks for the system (1) such that output y track the 

desired output yd and both control and learning can be 

achiseved. It is assumed that  yd(t) and its derivatives up 

to the 3th order are uniformly bounded and known 

smooth recurrent orbits. 

In the following, we show that Eq. (2) can be 

transformed into the normal form with respect to the 

newly defined state variables. 

Let z1 = y , z2 = ��2, z3 = ��2 = F2(x1, x2) + G2(x1, 

x2)x3. The derivative of  z3 is derived as: 
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where,
∑
=

∂∂+∂∂+=
2

1

32232 ))/)(()/(()(
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32)( GGxGZ = . 

Therefore, the electrically-driven mechanical 

systems defined by Eq.1 can be described as the 

following normal form with respect to the new state 

variables: 
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It should be noted that apart from the fact that 

functions Fz(x) and Gz(x) are functions of x, they are 

completely unknown.  

 

Property 4: From Property 3, it is also noted that there 

exist constants 021 >≥ gg  such that IgxGIg Z 21 )( ≥≥ , 
nRx 3⊂Ω∈∀ . 

 

Property 5: According to property 2, MLKG TZ
&& 11 −− =  is 

bounded, for a positive constant 03 >g , 
3

1 )( gxGZ ≤−& , 

nRx 3⊂Ω∈∀ . 

 

Remark 1: For mechanical systems, the components of 

)(qM  are only the linear combination of constants and 

trigonometric function of q, so the components of 

)(qM& are only the combination of ��   and trigonometric 

function of q, �� (q)q is bounded. According to �� (q) �� -1 

(q) = l, �� -1(q) is bounded. Gz(x) = M
-1

KT L
-1

, so 	�
z(x) 

and 	�
z
-1

(x)
 
are also bounded. 

 

ADAPTIVE NEURAL CONTROL AND 

LEARNING 

 

High gain observer design: From Eq.4, we noted that 

zi is incomputable. Since F2(x), F3(x), and G2(x), G3(x) 

are unknown nonlinear functions. The HGO used to 

estimate the state zi is the same as the one in (Ge et al., 

1999; Eehow et al., 2010) and is described by the 

following equations: 
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where, ε is a small positive design constant and 

parameters dj(i = 1, … , n -1) are chosen such that the 

polynomial s
n
 + d1 s

n-1
 =+ … + dn-1

s + 1
  is Hurwitz. 

Then, there exist positive constants h and t
*
 such that ∀  

> t
*

 we have: 
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To prevent peaking (Khalil, 2002), saturation 

functions can be employed on the observer signals 

whenever they are outside the domain of set Ω, as 

follows: 
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for nji ,,2,1,3,2,1 L== . 

 

Adaptive neural controller design: For the system 

defined by Eq. (4) and recurrent reference orbit  yd(t), 

an adaptive neural controller using RBF networks is 

designed as follows. Vector Yd, E and filtered tracking 

error vector r are defined as: 

 
TT

d

T

d

T

dd yyyY ],,[ &&&=                                        (8) 

 

dYzE −=                                             (9) 

 

EIKeeer T ][21 =++= λλ &&&                             (10) 

 

dd yzyye −=−= 1
                                    (11) 

 

where, E = [e
T
, 
�T, 
�T]

T
, e = y - yd  is the output tracking 

error vector, K = [λ2 I, λ1I]
T
 is appropriately chosen 

such that polynomial s
2
 + λ1s + λ2 is Hurwitz: 

 

dYzE −= ˆˆ                                                        (12) 

EIKr T ˆ][ˆ =                                        (13) 

 

Differentiating r: 
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where,  EKEKyv
TT

d

~
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Choosing the control: 

 

)(ˆˆ XSWrku
T

v −−=                                             (15) 

 

where, kv > 0  is the control gain, S(X)  = diag(S1(X), 

…, Sn(X)), [ ]Tn

T

n

TT XSWXSWXSW )(ˆ,),(ˆ)(ˆ
11 K=  are used to 

approximate the unknown functions: 
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where, [ ]Tn

T

n

TT
XSWXSWXSW )(,),()(

*

1

*

1

*
K= , X = [x

T
, �T

]
T
 ∈ 

Ωx ------- R
4n

 are the NN inputs, W
*
is the optimal NN 

weight vector and ε(X) are the NN approximation 
errors, with ||ε(X)||  < ε

*
 (ε

*
 > 0), ∀X∈ Ωx 

The weight update law is given by: 
  

WrrXSW ˆˆˆ)(ˆ Γ−Γ= σ&                                         (17) 

 
where, Г = Г

T
 > 0  is a constant design matrix, σ >0  is 

a small positive constant. 
The overall closed-loop system consisting of 

systems defined by Eq.1, filtered tracking error defined 
by Eq. (10), the controller defined by Eq. (15) and the 
NN adaptive law defined by Eq. (17) can be 
summarized into the following form: 
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where, *ˆ~
WWW −= , [ ]Tn

T

n
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~
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~
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Theorem 1: Consider the closed-loop system defined 
by Eq. (18). For any given recurrent reference orbit 
starting from initial condition yd(0) ∈ Ωd(Ωd 

 is a 

compact set) and with initial condition y (0) ∈ Ω0 (Ω0 
 

is a compact set) and  �� (0) = 0 we have that:  
 

• All signals in the closed-loop system remain 
ultimately uniformly bounded. 

• There exists a finite time T1 (T1 > t
*
)such that the 

state tracking errors E= [e
T
, 
�T, 
�T]

T
 converge to a 

small neighborhood around zero for all t ≥ T1 
by 

appropriately choosing design parameters. 

 

Proof: 

• Consider the following Lyapunov function: 
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Differentiating  Vw: 
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Thus, it follows that if ||�� ||> s
*
 / σ, then ��

w> 0 s
*
 is 

the upper bound of ||S(X)|| (see reference literature 

(Slotine and Li, 1991). This leads the UUB of ||�� ||  as 

||�� || ≤  s
* 

/ σ. According to � �  ��  = W
*
,we have that 

��  is UUB as follows: 
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Take the Lyapunov function Vr = r
T
G

-1
zr/2. 

Differentiating Vr, we have: 
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where, 2/31 gkk vv −= , ][ IKc T=λ
. Note that the 

equality zE ~~
=  can be easily induced from Eq.9 and Eq. 

(12) as follows: 
 

hzzzEEE ε≤=−=−= ~ˆˆ~
                             (23) 

 

Let ***~
ε+= sWc , Eq. (22) is further derived as: 

 

)/(1 vvr kchcrrkV −−−≤ ελ
&                               (24) 

 
This implies that the filtered tracking error vector r 

is UUB as follows: 
 

vkchcr /+≤ ελ
                                                  (25) 

 
Whose boundary can be made small enough by 

increasing the control gain kv and decreasing ε. 
Because r = 
�  + λ
�  +  λ2 e is stable by 

appropriately choosing design parameters λ1, λ2 and yd, 
��d, �� d are bounded, then z1, z2, z3 

are bounded. S(X) is 
bounded for all values of X, we conclude that control u 
is also bounded. Thus, all the signals in the closed-loop 
system remain ultimately uniformly bounded. 

 

• Consider the following Lyapunov function: 
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The derivative of Vr is: 
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Let, kv = 2��v1 + 3 ��v2 + g3/ 2 , using the inequality 

2α
T
 β ≤ ηα

T
 α + (1/ η) β

T
 β (η > 0), we have: 
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where, �λ̅ = kv cλ ||�̃|| = O(εh)，s
*
  is the upper bound of 

||S(X)||,  �� *
is the upper bound of ||�� ||which is given in 

Eq. (21). Then Eq. (27) becomes: 
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Let, δ = (�� *2
 s

*2
 + ε

*2
 + �̅2λ)/ (4��v2), it is clear that δ 

can be made small enough using large enough kv, so we 

have: 

  

δδ +−≤+−≤ rvv

T

r VgkrkrV 211 2&                             (32) 

 

Let c = ��v1�̅2,p = δ /2c > 0 then Vr  satisfies: 

 

)2exp())0(()(0 ctpVptV rr −−+<≤                        (33) 

 

that is: 

 

)2exp()0(22 22 ctVgpgrr r

T −+<                             (34) 

  

The above equation implies that given 

12 /2 vkpg δβ => , there exists a finite time T1, 

determined by δ and ��v1, such that for all t ≥ T1, the 

filtered tracking error r  satisfy: 

 

β<r                                                           (35) 

 

where, β is the size of a small residual set that can be 

made small enough by appropriately choosing 
21, vv kk . 

By choosing a large kv, the filtered tracking error r can 

be made small enough ∀t ≥ T1 That is to say, there 

exists a T1 such that the state tracking errors 
TTTT eeeE ],,[ &&&= converge to a small neighborhood 

around zero for all t ≥ T1 by appropriately choosing 

design parameters (Slotine and Li, 1991)
,
 so that the 

tracking states z(t)|t≥T1. follow closely to Yd(t)|t≥T1. 

 

Remark 2: Theorem 1 indicated that the system orbits 

)(tz  will become as recurrent as Yd(t) that after time 

T1(T1 > t
*
), so x(t) will also become recurrent. � 

converges to a small neighborhood around y(3)d )3(

dy  

after  T ≥ T1，which indicates that ��  is as recurrent as 

y
(3)

d. Since X = [x
T
, �T

]
T
are selected as the RBF 

networks inputs, according to theorem 2.7 in Wang and 

Hill (2009), S(X) will satisfy the partial PE condition, 

i.e., along  Yd(t)|t≥T1., Sξ(X) satisfies the PE condition. 

 

Remark 3: The key aspect of the proposed method is 

that electrically-driven mechanical systems are 

transformed into the affine nonlinear system in the 

normal form with state transformation. Thus, learning 

and stability analysis avoid using virtual control terms 

and their time derivatives, which require complex 

analysis and computing. In our proposed approach, only 

one RBF network is employed to approximate the 

unknown lumped system nonlinear dynamics, which 

shows the superiority of our proposed learning control 

scheme. 

Learning from adaptive neural control stability of a 

class of LTV systems:  For deterministic learning from 

adaptive neural control of nonlinear systems with 

unknown affine term, the associated LTV system is 

extended in the following form Liu et al. (2009): 
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where, qqn ReRe ∈∈ −
2

)(

1 , , pR∈η , nnRA ×→∞⋅ ),0[:)( ,

qpRS ×→∞⋅ ),0[:)( , qqRG ×→∞⋅ ),0[:)(  and 0>Γ=Γ T  

Define npTTT RtStBeee ×∈== )](0[:)(,],[: 21
, =:)(tH  

{ } nnRtGIdiagblock ×∈− )( , where diag refers to block 

diagonal form and C(t) : = ГB(t)H(t). 

 

Assumption 1: (Loría and Panteley, 2002). There 

exists a ∅M < 0such that, for all t ≥ 0, the following 

bound is satisfied: 

 

M
dt

tdB
tB φ≤







 )(

,)(max
                                    (37) 

 

Assumption 2: (Liu et al., 2009). There exist 

symmetric matrices P((t) and Q(t) such that –Q(t) =  

)()()()()( tPtAtPtAtP T++ & . Furthermore, 
Mmm pqp ,,∃  

and 0>Mq  such that, IptPIp Mm ≤≤ )(  and IqtQIq Mm ≤≤ )( . 

 

Lemma 1: (Liu et al., 2009). With assumption 3.1 and 

3.2 satisfied in a compact set Ω, system defined by 

Eq.36 is uniformly exponentially stable in the compact 

set  Ω if S(t) satisfies the PE condition. 

 

Learning from adaptive neural control : Using the 

localization property of RBF network, after time T1, 

system defined by Eq.18 can be expressed in the 

following form along the tracking orbits X(t)|t≥T1. as:  
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where, [ ]Tj

T

j

TT XSWXSWXSW )(
~

,),(
~

)(
~

11 ξξξξξξ K= , Sξ(X) is a 

subvector of S(X); �� ξ is the corresponding weight 

subvector; the subscript � ̅stands for the region far away 

from the trajectories X(t)|t≥T1.; εξ are the local 

approximation errors, ||εξ||  is small. 

 

Theorem 2: Consider the closed-loop system defined 

by Eq. (38). For any given recurrent reference orbit 

starting from initial condition yd(0) ∈  Ωd and with 
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initial condition yd(0) ∈ Ωd, 0)0(ˆ =W  and control 

parameters appropriately chosen, we have that 

Along the tracking orbits X(t)|t ≥ T, neural weight 

estimates �� ξ converge to a small neighborhood of the 

optimal values *

ξW  and locally accurate approximation 

of the unknown closed-loop system dynamics ψ(X) are 

obtained by )(ˆ ZSWT  and )(ZSW T , where W  is obtained 

from: 

 

))(ˆ(
],[

tWmeanW
ba ttt∈

=                                                  (40) 

 

where, [tα, tb] (tb > tα > T , T1) represents a time segment 

after transient process of Ŵ . 

 

Proof: Let θ = G
-1

z(x)r，and  η = �� ξ, then system 

defined by Eq.38 is transformed into: 
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                         (41) 

 

Rewrite Eq. (41) in matrix, we have: 
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−
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σ
ε

η
θ

η
θ

Wr

rrk
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)()(

&
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Because )()()ˆ( hOhckrrk vv εελ =≤− , so )ˆ( rrkv −+ξε  

and
ξξσ Wr ˆˆΓ are small, system defined by Eq.42 can 

be considered as a perturbed system (Wang and Chen, 

2011). 

where,  

 

)()()()( 1 xGxGxGktA ZZZv

−+−= &                      (43) 

 

)()( XStB T

ξ−=                                          (44) 

 

)()()( xGXStC ZξξΓ−=                                            (45) 

 

Introducing P(t) = Gz(x)，we have: 

 

ZZZvZ

T GGGkGPAPAP &&& +−−=++ − )(2 1 .                 (46) 

 

The satisfaction of Assumption 3.1 can be easily 

checked. With Gz(.) and 	�
z(.),	� -1

z(.),being bounded, kv 

can be designed such that 2Gz(kv =	�
z
-1

)Gz = 	�
z is 

strictly positive definite and the negative definite of ��  + 

PA + A
T
P, is guaranteed. Thus, Assumption 2 is 

satisfied. 

After time T1, the NN inputs X(t) follow recurrent 

orbits and the partial PE condition (Wang and Hill, 

2006, 2009)
 
can be satisfied by the regression subvector 

Sξ(X), which consists of RBF networks with centers 

located in a small neighborhood of the tracking orbits 

X(t)|t ≥ T1. Thus, uniformly exponentially stability of the 

nominal system of system defined by Eq. (42) is 

guaranteed by Lemma 1. For the perturbed system 

defined by Eq. (42), using Lemma 4.6 in Khalil (2002), 

the parameter errors η = �� ξ converge exponentially to a 

small neighborhood of zero in a finite time T(T > T1), 

with the size of the neighborhood being determined by 

the NN approximation ability and state tracking errors. 

The convergence of �� ξ to a small neighborhood of 

W
*

ξ implies that along the tracking trajectories X(t)|t ≥ T, 

the unknown closed-loop system dynamics ψ(X) can be 

represented by regression subvector Sξ(X) with small 

error, i.e.,: 

 

ξξξ εψ += )(ˆ)( XSWX T                                             (47) 

 

where, T

jj

T wwW ]ˆ,,ˆ[ˆ
1 ξξ L=  is the subvector of �� , 

[ ]Tj

T

j

TT XSWXSWXSW )(ˆ,),(ˆ)(ˆ
11 ξξξξξξ K=  and *εεξ − is small. 

Choosing ��  according to ))(ˆ(
],[

tWmeanW
ba ttt∈

= , Eq. (47) 

can be expressed as: 

 

ξξξ εψ += )()( XSWX T                                          (48) 

 

where, ��  T

jj

T wwW ],,[ 1 ξξ L= Tξ = is the subvector of 

�� , [ ]Tj

T

j

TT XSWXSWXSW )(,),()( 11 ξξξξξξ K=  and �ξ̅ are errors 

using  �� T
ξ Sξ(X)to approximate the unknown closed-

loop system dynamics. After the transient process, 

ξξ εε −  is small. 

According to the localization property of RBF 

network, both )(XSξ
 and )(XSW T

ξξ
 are very small 

along the tracking trajectories  X(t)|t≥T. This means that 

the entire RBF networks )(XSW T  can approximate the 

unknown functions ψ(X) along tracking trajectories 

X(t)|t ≥ T, as: 

 

2

1

)(

)()()(

ε
εψ ξξξξ

+=
++=

XSW

XSWXSWX
T

TT

                      (49) 

 

where, [ ]Tn

T

n

TT
XSWXSWXSW )(,),()( 11 K= , ||ε2|| - ||ε2| |is 

small. It is seen that )(XSW T  can approximate the 

unknown nonlinear functions ψ(X) along the tracking 

trajectories  X(t)|t ≥ T,. 

 

Remark 4: Theorem 2 reveals that deterministic 

learning (i.e., parameter convergence) can be achieved 
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during tracking control to a recurrent reference orbit. 

The learned knowledge can be stored in the constant 

RBF networks )(XSW T , but it is generally difficult to 

represent and store the learned knowledge using the 

time-varying neural weights. Through the deterministic 

learning, the representation and storage of the past 

experiences become a simple task. 

 

SIMULATION 
 

A single-link robotic manipulator coupled to a DC 
motor is considered. The dynamic equations of the 
system are: 

 

uqKRIIL
IKqNqBqM

B

T

=++
=++

&&
&&& )sin(                               (50) 

 

where, 
000

2

0

2

00

2

0 ,
5

2

3

1
gLMmgLNRLMmLJM +=++=  

q  = The angular position 
J = The inertia of the actuator’s rotor 
L0  = The length of the link 
m = The mass of the link 
M0 = Payload mass 
R0 = The radius of the payload 
g = The gravitational constan 
KT = The torque constant 
KB = The back-EMF constant 
R = The armature resistance 
L = The armature inductance 
I  = The armature current  
u = The armature voltage  
 
Eq. (50) can be expressed in the following form: 
 

uxxxgxxxfx
xxxgxxfx

xx

),,(),,(
),(),(

321332133

32122122

21

+=
+=

=

&

&

&
                     (51) 

 
where, f2 = - M

-1
(Bx2 + N sin x1), g2 = M

-1
 KT, f3 = - L-

1, (Rx3 + KBx2), g3 = L
-1

. 
The initial state values are x1(0) = 0x2(0) and x3(0) 

= 0 and the desired output is set to yd = 0.8sint.  
Our proposed controller design procedure is 

summarized as follows. First, define the three-order 
HGO as: 

 

ydd +−−−=
=
=

122313

32

21

ξξξξε
ξξε
ξξε

&

&

&

                           (52) 

 
Further, the state estimation vector and error vector 

are Tz ],,[ˆ
2

32
1 ε

ξ
ε
ξ

=z and 
dz YE −= ˆˆ . The control input 

is determined as: 
 

TT

v vxxxXXSWrKu ]ˆ,,,[,)(ˆˆ
321=−−=                      (53) 

 
 

(a)  
 

 
 

(b)   
 

Fig. 1: Output tracking error; (a): q tracking error using 

�� TS(X); (b): q tracking error using  �� TS(X)  
 

where, EEyv d

~
]0[ˆ]0[ˆ

2121 λλλλ ++−= &&&  and Er ˆ]1[ˆ
21 λλ=  . 

The neural weight is updated by: 

 

WrrXSW ˆˆˆ)(ˆ Γ−Γ= σ&                                          (54) 

 

The parameters of the single-link robotic system 

(Huang et al., 2008) are J = 1625 × 10
-3

(kgm
2
), R = 

5.0(Ω), KT = 0.9(Nml A), KB = 0.9(Nml A) KB = 

0.9(Nml A), B = 1625 × 10
-3

 (Nml/rad), L0 = 

(0.305(m)), m = 0.596(kg), M0 = 0.434(kg) M0 = 

0.434(kg), R0 = 0.023(m) and L = 0.025(H)  

The design parameters of the above controller are 

Kv = 50, λ1 = λ2 = 25, Г = diag[20], , σ = 0.0001. The 

HGO parameters are d1 = 3, d2 = 3 , ξ(0) = [0, 0, 0]
T
 and 

ελ = 1/100. The 

 RBF networks �� T
S(Z) contain 5 × 5 × 7× 11 = 

1925 nodes (i.e., N = 1925), the centers Ci(I = 1, 2, … , 

N) are evenly spaced on [-1.5 1.5] [-1.5 1.5] × [-3.5 3.5] 

× [-25 25], with width ηi = 0.75,  �� (0) = 0.  

Figure 1 to 5 show the simulation results. The 

tracking performance of system is shown to be good in 

Fig. 1 and 2   and   the   tracking   performance  become  
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(a) 
 

 
 

(b)  
 

Fig. 2: Speed tracking error; (a): ��  tracking error using 

�� TS(X); (b): ��   tracking error using  �� TS(X)  
 

 
 

Fig. 3: Partial parameter convergence �� ξ 

 
better using the learned knowledge. In Fig. 3, it is seen 

that the convergence of  �� ξ is obtained. The control 
signal u  and state observer error are presented in Fig. 4 
and 5, respectively. 

From the simulation results, we can see clearly that 
our proposed neural control algorithm has not only 
implemented output tracking perfectly, but also 
achieved deterministic learning of the unknown closed- 

 

 
(a) 

 

 
 

(b)  

 

Fig. 4: Control input u; (a): control input u using �� T S(X); 

(b): control input u using  �� TS(X)  
 

loop system dynamics during tracking control to a 
recurrent reference orbit. The learned knowledge stored 
as a set of constant neural weights can be used to 
improve the control performance of system. 
 

CONCLUSION 
 

In this study, we have investigated deterministic 

learning from adaptive neural control of electrically-

driven mechanical systems with completely unknown 

system dynamics. Compared with back stepping 

scheme, the key factor of the proposed method is that 

the electrically-driven mechanical systems are 

transformed into the affine nonlinear systems in the 

normal form, which avoids back stepping in controller 

design. Only one RBF network was used to 

approximate the unknown lumped nonlinear function, 

which shows the superiority of our proposed control 

algorithm. The designed controller has not only 

implemented the UUB of all signals in the closed-loop 

system, but also achieved learning of the unknown 

closed-loop system dynamics during the stable adaptive 

control process. The learned knowledge stored as a set 

of constant neural weights  can be  used to  improve the  
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(a) 

  

 
(b)  

 

Fig. 5: State observer error; (a): q observer error; (b): ��  

observer error 

 

control performance and can also be reused in the same 

or similar control task so that the electrically-driven 

mechanical systems can be easily controlled with little 

effort. 
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