
Research Journal of Applied Sciences, Engineering and Technology 6(16): 2951-2956, 2013

DOI:10.19026/rjaset.6.3677

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2013 Maxwell Scientific Publication Corp.

Submitted: January 02, 2013 Accepted: February 08, 2013 Published: September 10, 2013

Corresponding Author: Yao Yi, College of Command Information System, PLA University of Science and Technology,

China, Tel.: 13851669990
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

2951

Research Article

Research on Metamorphic Testing: A Case Study in Integer Bugs Detection

Yao Yi, Zheng Changyou, Huang Song and Ren Zhengping
College of Command Information System, PLA University of Science and Technology, China

Abstract: In order to solve Test Oracle problem which restricts the development of software testing techniques
significantly, Metamorphic Testing is used to prove a way to determine the correctness of testing outputs with
metamorphic relations between a series of outputs that correspond to a series of inputs in integer bugs detection,
based on necessary properties of software under testing. A metamorphic relationship is proposed which can detect
invisible integer bugs without oracle. It is shown in our case study that this method can detect some invisible errors
which are difficult to be found in conventional approach and improve the efficiency of integer bugs detection.

Keywords: Integer bugs, metamorphic relationship, metamorphic testing, test oracle

INTRODUCTION

The basic process of software testing is in certain

conditions, to provide test input and record output, then
to compare actual output with expected output to
determine whether the test passes (Heitmeyer, 2001).
Software testing theory assumes that there must be a
clear expected output, as a criterion to determine
whether the test passes, however. But the reality is:
software is not clear or difficult to obtain expected
output and thus difficult to determine the correctness of
the actual output. Therefore, there is a ‘non-test
program’ which is determined by character of the test
itself and not because of human factors (such as
software development process lacks the necessary
testing documentation, etc.). This question is so-called
‘Test Oracle’ problem in the software testing (Weyuker,
1982).

Test oracle is a mechanism for checking the
correctness of testing results. An ideal test oracle could
give “pass” / “no pass” judgments for test data.
Unfortunately, an ideal oracle is either hard to obtain or
difficult to apply. For instance, the oracle of numerical
analysis software such as programs on partial
differential equations is really hard to obtain. In
encryption systems, where public key algorithm
involves calculation of large integers, it is difficult to
verify the correctness of the system. While testing Web
search engines, it is also hard to judge whether the
result is complete. When it comes to object-oriented
software testing, the equivalence between two observed
objects is nearly impossible to determine (Chen and
Tse, 2001). In testing of GIS software, engineers are
hard to judge the outputs of spatial distance calculation
without test oracle.

However, even though the ideal oracle is hard to
get sometimes, testing can still be carried out. By
identifying the necessary relations among outputs of the
target program and checking whether the actual outputs
satisfy these relations, the correctness of the program
would get enhanced to some degree and confidence to
the correctness of programs could also be increased
(Asrafi et al., 2011). Baresi and Young are the first to
propose that necessary properties of program can be
considered as an oracle. For example, a common
method used for testing numerical programs is to check
if the outputs satisfy certain properties, such as the
property of ex ×e-x = 1 for exponential calculation
programs. Such relations are widely used in testing of
numerical programs. Program checkers and self-testing
also make use of relations among outputs of object
program to check its correctness by themselves. To
design programs that check their work, one basic
technique used is, first, determine the necessary
properties of object program, then check if the program
satisfies these properties with random inputs. The
widely used properties are linear consistency and
neighbor consistency. In software tolerance, the most
relevant technique is data diversity that is re-describing
the input in a different format and executing them
again. This technique can lower the cost greatly
compared with “N-version programming”. Data
diversity was first proposed for fault tolerance, not for
fault detecting. Meanwhile, properties applied by data
diversity are restricted by relations that can be
recognized (Kuo et al., 2011a, b).

By expanding these techniques, Prof. (Chen et al.,

1998) proposed a software testing technique based on

Metamorphic Relations (MR), called Metamorphic

Testing (MT), which checks the relation between inputs

Res. J. App. Sci. Eng. Technol., 6(16): 2951-2956, 2013

2952

and outputs to determine whether the program satisfies

the necessary properties. As a result, it will be

unnecessary to assume the existence an oracle for

individual inputs and hence the test oracle problem can

be alleviated. The necessary properties of the program

under test are called metamorphic relations (Manolache

and Kourie, 2001).
The integer bug is one of the main reasons that

cause software calculation error. In computer program,
the integer variables are expressed by fixed-bit-wide
vector. When the value got by instruction operation is
more than the value of storage capacity, integer
overflow take places. When Europe launches rocket of
Ariane5 firstly, because of an integer overflow in the
procedure of a 64-bit floating point number into a 16-
bit signed integer, the rocket control system instructing
incorrectly resulted in disastrous consequences that the
rocket vacated. In addition, because it can’t afford to
test every result of calculation, integer overflow in
commercial software has not been detected by and
large. For example, if an integer is disposed to be an
unexpected value by a program and this unexpected
value is then used for the array indexes or loop variable,
it will produce software security vulnerabilities in the
program.

This study presents a method to detect integer bugs
by metamorphic relationship and validates this method
by case study.

LITERATURE REVIEW

The test oracle problem has always been restricting

the development of software testing. Researchers have
been exploring the solutions to the problem in different
applications. Then in Chen et al. (1998) and his fellows
proposed MT, which is an effective method for test
oracle problem. This technique boosts our confidence to
the correctness of programs by checking whether it
satisfies some necessary properties of the program,
which are called MRs (Chen et al., 2009).

There are two understandings of the test oracle.
Some people refer to the means of providing an
expected outcome. Other people also include the
process of comparing the actual outcome against the
expected outcome. According these two explanations,
we are going to give the definition of the test oracle.

Definition 1 (Test oracle in a narrow sense): Suppose
T is the testing field, p (t) is the output of the program
when given the input t, f (t) is the correct output of SUT

where tT. Then test oracle is a mechanism for
providing f (t) in a narrow sense.

Definition 2 (Test oracle in a wide sense): Suppose T
is the testing field, p (t) is the output of the program
when given the input t, f (t) is the correct output of SUT

where tT. Then in a wide sense, test oracle is able to
both provide f (t) and judge whether p (t) = f (t) is
satisfied.

For example, program p_sin (x) is an
implementation of sin (x), the test oracle in a narrow

sense is all the sin (t) for tT and the test oracle in a
wide sense refers to a mechanism that checks whether

expression p_sin (x) = sin (x) is true for tT.

The test oracle used in this paper is referred to the

one in a narrow sense without special statements.

Definition 3 (Metamorphic Relation (MR)): Suppose

program P is the implementation of function f and x1,

x2, …, xn (n>1) is n groups of input for f, their

corresponding outputs are f (x1), f (x2), …, f (xn). If x1,

x2, …, xn satisfy relation r, it can be referred that f (x1),

f (x2), …, f (xn) satisfy relation rf, that is:

r (x1, x2, …, xn) rf (f (x1), f (x2), …, f (xn)) (1)

Then (r, rf) is called a metamorphic relation of P.

Therefore, if P is correct, then it must satisfy the

following comprehension:

R (I1, I2, …, In) rf (P (I1), P (I2), …, P (In)) (2)

I1, I2, …, In are actual inputs of P corresponding

with x1, x2, …,xn and P (I1), P (I2), …, P (In) are the

outputs. People could verify the correctness of P by

checking whether expression (2-2) is satisfied while

testing.

Suppose program P is correct, then the following

expression should be satisfied: r (I1, I2, …, In) rf (P

(I1), P (I2), …, P (In)), where I1, I2, …,In is the input of P

corresponding to x1, x2, …, xn and P (I1), P (I2), …, P

(In) is the output. We use x1, x2, …, xn to represent the

input in this paper. So if the outputs of test cases don’t

satisfy the above formula, then the hypothesis is wrong

and there are faults in the program. Metamorphic

relations are the key to judging the execution of the

testing and their quality greatly affects the efficiency of

testing. For different SUTs, there are usually more than

one metamorphic relation, suppose MRi (ri, rfi) is the ith

metamorphic relation of P and MR = {MR1, MR2,…}

the set of metamorphic relations.

Based on the definition above, a formal definition

of MR is proposed, which expresses the relation by

symbolic logic as formula:

i i

1 2 n f 1 2 n

P(x)=[P](x)
MR :

r(x ,x ,..,x) r ([P](x), [P](x),...,[P](x))

 (i=1,2,...,n)

 (3)

Then, the relation r is called as Input Relation of

Metamorphic Relation (MR_IR), which denote as

IR = {(x1, x2, …, xn) |r (x1, x2, …, xn)}. The relation rf is

called as Output Relation (MR_OR), which also denote

as OR = {([P] (x1), [P] (x2), …, [P] (xn)) |rf ([P] (x1), [P]

Res. J. App. Sci. Eng. Technol., 6(16): 2951-2956, 2013

2953

(x2), …, [P] (xn))}. And the relation [P] (x) is called as

Self Relation of Metamorphic Relation. Self Relation

Therefore, metamorphic relation could be repressed as

MR = [IR, SF, OR].

Definition 4 (Original test cases): It is also called
Original Test Input recorded as OTI. Suppose there is a
metamorphic relations (r, rf) and its input is r (x1, x2, …,
xn), then the OTI is test cases from r (x1, x2, …, xn)
which are generated with other testing methods, such as
special testing, random testing and iterative testing.

Definition 5 (Follow-up test cases): It is also called
Follow-up Input (FTI). Suppose we have a
metamorphic relation (r, rf) and its input is r (x1, x2, …,
xn). FTI is all the test cases from r (x1, x2, …, xn) except
original test cases. Follow-up test cases are generated
based on metamorphic relations.

Suppose the input of a MR is r (x1, x2, …, xn), then
it can be recorded as r (OTI, FTI). For example, for
program p_sin (x), there is a MRsin1: sin2 (x1) + sin2

(x2) = 1, where x2 = /2-x1, x1 is the original test case
and x2 is the follow-up test case.

METHODS OF INTEGER BUGS DETECTION

Integer bugs detection currently contains three

methods. It consists of prior condition, error detection
and back conditions. Among them, the prior condition
is used to check whether an error occurs before perform
operation. For example, a prior condition of division by
zero is that the divisor is 0. These prior conditions can
often abstracted to be formalization rules in advance
and then use static code analysis tool based on these
rules to review codes. Error detection required to
determine whether the errors occur in the process of
implementation. Because integer errors are caused by
limit of machine, the operating system and compiler
can provide a handling mechanism to find positive
overflow error. Back conditions is to carry out the
operations firstly and then to get the conclusion by
comparing the actual result with the expected result.
Back condition is also one of the most common
detection methods.

Three methods of Prior condition, error detection
and error condition have advantages and disadvantages
of themselves, but they all are not suitable for integer
bugs if the expected results can not directly be got and
the program output which is normal is not the correct.
Under this circumstance, testers are difficult to get
efficient and accurate test results by use of these three
methods generally.

Methods of integer bugs detection based on

metamorphic testing: For the ‘Test Oracle’ problem in

the method of the integer bugs detection, method of the

integer bugs detection based on metamorphic test is

proposed, which is essentially a detection method based

on validation of correctness. If an integer error occurs,

the program must calculate to get an inaccurate value

and then if this inaccurate value is used in the next step

calculation, the program will eventually either collapse,

or calculate to get an unexpected output. That is, when

the inputs of software meet some certain characters, the

corresponding output of software will also meet the

corresponding character.

Before the specific description of this method,

formal definitions of the concepts which are required in

the method are given.

Definition 1: It is assumed that program P is an

implementation of the function f. x1, x2, …, xn, (n>1) are

n-group variables for function f and f (x1), f (x2), …, f

(xn) are corresponding outputs for function f. If x1, x2,...,

xn satisfy the relation r among themselves and f (x1), f

(x2), ..., f (xn) satisfy the relation rf:, (r, rf) is recognized

as the metamorphic relationship of program P .

Definition 2: For the same program P, Metamorphic

relationships (r, rf) which need to verify or to extract

always are not only one. It is shown that Ri = (ri, rfi)

denotes the i-th metamorphic relationship of the

program P and that S (R) = {R1, R2, …} denotes the set

of metamorphic relationships of the program P.

Method of the integer bugs detection based on

metamorphic relationship includes three steps:

Step 1 : Select the source test cases. For program P, I1,

I2, …, In are selected as inputs corresponding

to x1, x2, ..., xn in program P. That is, source

test case (I1, I2, …, In) are gained.

Step 2 : Select the correct metamorphic relationship to

generate follow-up test cases. We choose the

appropriate metamorphic relation R = (r, rf) of

program P. It is assumed that the program P is

correct and then r (I1, I2, …, In) = >rf (P (I1), P

(I2), …, P (In)) is generated from definition 1.

It means that follow-up test cases to be derived

from the test case. If there are a variety of

metamorphic relationships, can also choose a

number of metamorphic relations, some

metamorphic relationships R1, R2, ..., Rn can

be selected to build many follow-up test cases

in order to enhance the veracity of test.

Step 3 : Compared results from source test cases with

Results from follow-up test cases in order to

judge whether metamorphic relationship is

obeyed. If program P is correct, P obeys r (I1,

I2, …, In) = >rf (P (I1), P (I2), …, P (In)) in

which (P (I1), P (I2), …, P (In)
are the

corresponding output. So if the test case which

is running does not meet the formula above,

the assumption does not correct and it means

the program has errors.

Res. J. App. Sci. Eng. Technol., 6(16): 2951-2956, 2013

2954

Source

testing

cases Carring out

source testing

cases

Making

follow-up

testing case

Carring out

follow-up

testing case Judging result of testing

cases whether to obey the

Metamorphic relation by

some limit

Testing result

Choosing

Metamorphic

relation

Fig. 1: Process of integer bugs detection based on metamorphic testing

Figure 1 shows process of integer bugs detection based on metamorphic testing.

CASE STUDY

Programs for calculating graphics area on Cartesian coordinate have been applied to computer graphics, physics

and other fields. Here, calculation of graphics area on Cartesian coordinate is used as case studies for research on

method of integer bugs detection based on metamorphic testing.

The program can be described as: vertex coordinates of convex polygon are input in the txt file; the program

reads the txt file as input and then calculates area and perimeter of convex polygon. The strategy of area calculation

is to divide convex polygon into several triangles and then each triangle is calculated according to Heron. Finally,

the sum area is calculated.

Variation design: The statement "S = (s1 + s2 + s3) /2" is modified as "S = (s1 + s2 + (int) s3) /2", while the

program of variation version which contains integer errors is recorded as mutant1 (if variable s3 is changed from

double type into integer type, truncation errors may be appeared). Codes of program are shown as below:

/* calculate triangle area with Heron's formula */

double area (triangle a)

{

double s1, s2, s3, S, area;

s1 = side (a.v1, a.v2);

s2 = side (a.v2, a.v3);

s3 = side (a.v3, a.v1);

S = (s1 + s2 + (int) s3) /2; //Correct version: S = (s1 + s2 + s3) /2;

area = sqrt (S* (S - s1) * (S - s2) * (S - s3));

return area;

}

Metamorphic relationship: By using similar triangles character that area and perimeter are proportional to side

length, the following metamorphic relationships can be gained, as shown in Fig. 2.

The metamorphic relationships are separately tagged as MR1 (ratio of area) and MR2 (the ratio of perimeter),

then some equations exist as below:

' ' '' '' ''' '''

1 2 3 1 2 3 1 2 3 1 2 3

' '' ''' ' '' '''

1 2 1 2 1 2 1 2 1 3 1 3 1 3 1 3

(, ,), (, ,), (, ,), (, ,)

2 4 8 2 4 8

(

triangle v v v triangle v v v triangle v v v triangle v v v

v v v v v v v v v v v v v v v v

perimeter v

and ，

' ' '' ''

1 2 3 1 2 3 1 2 3

' ' '' '' ''' '''

1 2 3 1 2 3 1 2 3

' '

1 2 3 1 2 3

' '

1 2 3 1

, ,) (, ,) (, ,)
2(ratio of perimeter)

(, ,) (, ,) (, ,)

(, ,) (, ,)

(, ,) (,

v v perimeter v v v perimeter v v v

perimeter v v v perimeter v v v perimeter v v v

area v v v area v v v

area v v v area v

'' ''

1 2 3

'' '' ''' '''

2 3 1 2 3

(, ,)
4 ratio of area

,) (, ,)

area v v v

v v area v v v
（ ）

Testing cases design: The integer errors usually occur near the border of input field, so two sets of data are

randomly generated in the two fields of [64535, 66535] and [-66535, -64535] and the two sets of data were

randomly combined into 10 groups of the source test input, as shown in Table 1.

Res. J. App. Sci. Eng. Technol., 6(16): 2951-2956, 2013

2955

Y

X

1v

2v

3v

'

2v

'

3v

''

2v

''

3v

'''

2v

'''

3v

Fig. 2: Area and perimeter are proportional to side length in
similar triangles

In accordance with MR1 and MR2, follow-up test

inputs are generated as below:

''

' ' '' ''1 3 1 31 2 1 2

2 3 2 3

''''

''' '''1 31 2

2 3

, ; , ;
2 2 2 2

,
2 2

v v v vv v v v
v v v v

v vv v
v v

Because of errors of floating point calculations,

two formulas that MR1 (circumference ratio) and MR2

(area ratio) should be converted in order to eliminate

the impact of these errors. The new formulas are as

follows:

1 2

1 2 3

1 2 3

1 2

1 2 3

1 2 3

3

1

() ()()
2 , 2 , 2

() () ()

() ()()
and 4 , 4 , 4

() () ()

1
[1,10] 10

3

 j

j

perimeter Y i perimeter Y iperimeter Si

perimeter Y i perimeter Y i perimeter Y i

area Y i area Y iarea Si

area Y i area Y i area Y i

i

1

， s
3

3 3

1

1
, 10

3

 j

j

2s

Y1i, Y2i, Y3i are generated as three sets of follow-up

test inputs by Si in accordance to MR1 and MR2. If the

conditions are obeyed, we call test cases (Si, Y1i, Y2i,

Y3i) satisfy MR1 and MR2 of metamorphic

relationships.

TESTING RESULTS

Through running the source version and follow-up

version of the program with gcc compiler under the

circumstance of Linux, results are gained as shown in

Table 2. Compared to test results executed in versions

before and after variation of the program, we can

conclude that test cases set {(Si, Y1i, Y2i, Y3i)| i = 1, 2,

3,..., 9, 10} generated by MR1 and MR2 can detect

Table 1: Source test input

Input (no.)

v1

v2

v3

--

x1 y1 x2 y2 x3 y3

S1 65966.1 66370.0 65977.6 66090.3 65757.0 65819.9
S2 66395.3 65859.1 65878.5 65961.3 66281.4 66247.0
S3 -64788.6 65607.0 66361.0 65831.7 65741.6 -65139.1
S4 -65328.4 -666251.6 66155.9 -65364.1 -65463.0 -64683.6
S5 -65032.0 66382.5 66263.8 -64674.7 -64818.4 65959.3
S6 -64998.2 -65032.9 -65250.1 65727.8 66038.0 66371.1
S7 65921.9 65959.3 -64823.0 65937.1 66071.8 65997.4
S8 65676.0 66371.1 -65110.7 -64767.3 -64700.0 -65297.6
S9 -65313.0 65997.4 -64698.9 -65148.1 -65210.9 -65032.9
S10 -65364.1 -65297.6 -65072.6 -65394.0 -64687.5 -64616.0

Table 2: Test results of source version and mutant1 by MR1 and MR2

Test Case Source ∆𝑠1̅, ∆𝑠2̅ Mutant 1 ∆𝑠1̅, ∆𝑠2̅

(S1, Y11, Y21, Y31) -4 -52.39013 10 , 7.11892 10 1 2s s -2 -5

1Δs =8.49250 10 , 7.11892 10 2s

(S2, Y12, Y22, Y32) -4 -5=1.49831 10 , =1.87129 10 1 2s s -2 -5=1.98616 10 , =1.87129 10 1 2s s

(S3, Y13, Y23, Y33) -9 -8=1.69067 10 , =5.96740 10 1 2s s -4 -8=1.03223 10 , =5.96740 10 1 2s s

(S4, Y14, Y24, Y34) -6 -8=1.01271 10 , =5.43897 10 1 2s s -6 -8=1.01261 10 , =5.43897 10 1 2s s

(S5, Y15, Y25, Y35) -7 -7=8.58888 10 , =1.43737 10 1 2s s -2 -7=6.10469 10 , =1.43737 10 1 2s s

(S6, Y16, Y26, Y36) -9 -8=1.46789 10 , =7.44673 10 1 2s s -5 -8=8.64704 10 =7.44673 10 1 2s ， s

(S7, Y17, Y27, Y37) -6 -8=2.09947 10 =5.09306 10 1 2s ， s -1 -8=5.47477 10 =5.09306 10 1 2s ， s

(S8, Y18, Y28, Y38) -4 -7=1.70404 10 , =2.87375 10 1 2s s -2 -7=1.42761 10 , =2.87375 10 1 2s s

(S9, Y19, Y29, Y39) -7 -7=5.72487 10 , =2.03018 10 1 2s s -2 -7=1.62891 10 , =2.03018 10 1 2s s

(S10, Y110, Y210, Y310) -4 -5=1.88750 10 , =1.60825 10 1 2s s -4 -5=3.42968 10 , =1.60825 10 1 2s s

Res. J. App. Sci. Eng. Technol., 6(16): 2951-2956, 2013

2956

abnormal outputs caused by variation, i.e., mutant 1
flawed. Therefore, it’s proved that method of integer
bugs detection based on metamorphic relationship is
validated to find hidden integer bugs.

It is shown that defects of mutant 1 are detected
only by the MR1. The reason is that MR2 which is
metamorphic relationship obtained by the perimeter of
the triangle and the mutant 1's function is to calculate
area of a triangle, so it is unable to detect defects of
mutant 1 by the use of MR2.

CONCLUSION AND RECOMMENDATIONS

In this study, method of integer bugs detection

based on metamorphic relationship is proposed. It is
proved by case studies that this method of metamorphic
relationship can detect the hidden unexpected failure
which traditional testing techniques can’t detect.

Because of certain blindness of choosing source
test input and metamorphic relationship, optimization
algorithm of test case generation and selection of
metamorphic relationship are the research direction for
the future. At present, research method by use of the
evolutionary algorithms combined with metamorphic
relationship are proposed and error detection efficiency
of test cases is improved (Dong et al., 2010), but
whether this method is effective for the integer bugs
detection need to be further studied.

ACKNOWLEDGMENT

This study is supported by National High
Technology Research and Development Program of
China (No: 2009AA01Z402), China Postdoctoral
Science Foundation (No: 20110491843) and the Natural
Science Foundation of Jiangsu Province, China (Grant
No. BK2012059, BK2012060). Resources of the PLA
Software Test and Evaluation Centre for Military
Training are used in this research.

REFERENCES

Asrafi, M., H. Liu and F.C. Kuo, 2011. On testing

effectiveness of metamorphic relations: A case
study. Proceeding of 5th International Conference
on Secure Software Integration and Reliability
Improvement. IEEE Computer Society
Washington, DC, USA, pp: 147-156.

Chen, H.Y. and T.H. Tse, 2001. TACCLE: A

methodology for object-oriented software testing at

the class and cluster levels. ACM T. Softw. Eng.

Meth., 10: 56-109.

Chen, T.Y., S.C. Cheung and S.M. Yiu, 1998.

Metamorphic testing: A new approach for

generating next test cases. Technical Report

HKUST-CS98-01.

Chen, T.Y., J.W.K. Ho, H. Liu and X. Xie, 2009. An

innovative approach for testing bioinformatics

programs using metamorphic testing. BMC

Bioinformatics, 10: 24-35.

Dong, G.W., S.Z. Wu, G.S. Wang, T. Guo and

Y.G. Huang, 2010. Security assurance with

metamorphic testing and genetic algorithm.

Proceeding of IEEE/WIC/ACM International

Conference on Web Intelligence and Intelligent

Agent Technology, pp: 368-373.

Heitmeyer, C.L., 2001. Applying practical formal

methods to the specification and analysis of

security properties. Proceeding of the International

Workshop on Information Assurance in Computer

Networks: Methods, Models and Architectures for

Network Computer Security (MMM ACNS 2001)

Springer-Verlag, Heidelberg, St. Petersburg,

Russia, LCNS 2052: 84-89.

Kuo, F.C., S. Liu and T.Y. Chen, 2011a. Testing a

binary space partitioning algorithm with

metamorphic testing. Proceedings of the 2011

ACM Symposium on Applied Computing (SAC

'11) ACM, New York, USA, pp: 1482-1489.

Kuo, F.C., T.Y. Chen and W.K. Tam, 2011b. Testing

embedded software by metamorphic testing: A

wireless metering system case study. Proceeding of

2011 IEEE 36th Conference on Local Computer

Networks. Bonn, pp: 291-294.

Manolache, L.I. and D.G. Kourie, 2001. Software

testing using model programs. Software Pract.

Exper., 31: 12 11-1236.

Weyuker, E.J., 1982. On testing non-testable programs.

Comput. J., 25: 465-470.

