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Research Article 

Fuzzy-Approximator-Based Adaptive Controller Design for Ship Course-Keeping Steering 

in Strict-Feedback Forms 
 

Junsheng Ren and Xianku Zhang 

Laboratory of Marine Simulaton and Control, Dalian Maritime University, P.R. China 
 

Abstract: Along with increasing marine transportation and logistics, the ship autopilot has become much important 

not only to lower the seaman's operating intensions, but also to reduce the seaman's deployment. It is still a 

challenge to design ship course-keeping controller because of ship's uncertain dynamics and time-varying 

environmental disturbance. This study focuses on backstepping adaptive course-keeping controller design for ship 

autopilot. Takagi-Sugeno (T-S) fuzzy approximator can formulate ship motion's uncertainties. Therefore, the 

proposed controller has no need of a priori knowledge about ship's system dynamics. Command filter can bypass the 

iterative differential manipulations in conventional ship course adaptive backstepping controller. The design can 

guarantee the ultimate uniform boundedness of the signals in closed-loop system. Finally, simulation study verifies 

the efficiency of the ship course-keeping design. 
 
Keywords: Adaptive control, fuzzy system, ship course-keeping control, strict-feedback nonlinear system 

 
INTRODUCTION 

 
Nowadays, the large and high-speed ships have 

become more and more popular because of the 
increasing marine transportation and logistics. Thus, 
traffic density also increases during the past decades. 
To promote the economic profits, it is expected not only 
to lower the seaman’s operating intensions, but also to 
reduce the seaman’s deployment. In 1920s, classic 
control theories were applied to ship’s course-keeping 
controller design and Proportional-Integral-Derivative 
(PID) autopilot was invented. In 1970s, adaptive 
control theory was also applied. However, because of 
the complexities of ship’s dynamics, the randomness 
and unpredictability in environmental disturbances, 
these methods can’t handle the ship’s course control 
problem completely (Yang, 1999; Fossen, 1994). 
During recent years, kinds of the algorithms were 
applied to ship’s course control, such as model 
reference adaptive control, self-tuning control with 
minimal variance, neural network control, fuzzy 
control, variable structure control, robust control, 
generalized predictive control, intelligent control, etc 
(Roborts, 2008). Some of these algorithms had become 
the theoretical bases of recently developed autopilot. 
Furthermore, some studies had been published to study 
marine craft control (Roborts, 2008). 

On the other hand, a great deal of attention has 
been received in the field of nonlinear control (Isidori, 
1989; Slotine and Li, 1991). Many methods employ a 
synthesis approach where the controlled variable is 

chosen to make the time derivative of a negative 
definite Lyapunov candidate. The book (Krstić et al., 
1995) develops the backstepping approach to the point 
of a step-by-step design procedure. Backstepping is a 
technique to control the nonlinear systems with 
parameter uncertainty, particularly those systems in 
which the uncertainties do not satisfy matching 
conditions. Adaptive backsteping is a powerful tool for 
the design of controllers for nonlinear systems in or 
transformable to the parameter strict-feedback form, 
where x∈ ℜ𝑛 is the state, u ∈ ℜ  is the control input and 
θ ∈ ℜ𝑝 is an unknown constant vector. The adaptive 
backstepping approach utilizes stabilizing functions 𝛼̅𝑖 
and tuning functions 𝜏𝑖  for  i = 1,…,n. Calculation of 
these quantities utilizes the partial derivatives  𝜕𝛼̅𝑖−1/
 𝜕𝑥𝑗  and 𝜕𝛼̅𝑖−1/ 𝜕𝜃̂𝑙. 

Motivated by the pioneering study (Farrell et al., 

2009), a novel back stepping adaptive tracking fuzzy 

controller strategy is proposed for ship steering. The 

ship dynamics is formulated into a class of nonlinear 

system in strict-feedback form. The control objective is 

to force the ship’s course to track the output of the 

specified reference model. It is assumed that the ship 

motion’s dynamics are unknown. We use fuzzy logic 

system to approximate the unknown system functions. 

The proposed algorithm can guarantee the boundedness 

of all the signals in the closed-loop ship steering 

system. The main differences between our strategy and 

aforementioned methods (Du et al., 2007) are that, 

compensated tracking errors, not conventional tracking 
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errors, are used to construct the course-keeping 

adaptive fuzzy controller. Then, the proposed design 

avoids the repeated differential of virtual control law 

completely, which make the controller structure quite 

simple and easy to implement in engineering. The 

simulation results demonstrate the effectiveness and 

usage of the proposed course-keeping controller. 
 

PROBLEM FORMULATION AND  
PRELIMINARIES 

 
This section will describe ship course-keeping 

control system modeling, some useful preliminaries and 
Takagi-Sugeno fuzzy system. They will be used in the 
later discussions. 

Ship motion modeling: Japanese scholar Nomoto 
(Fossen, 1994) had put forward the 2nd-order linear 
mathematical model between ship’s rudder and course 
as follows: 

 

T K                                                             
(1) 

 
where,  
ψ  = Ship course  
δ  = Ship rudder angle 

T  = The ship’s straight-line stability index 

K  = The ship’s turning ability index 

 
From the linearization theory of nonlinear system, 

only under the condition of small perturbations of 
ship’s motion state variables from its basis states can 
this linear model (1) be applied to. The basis states 
refers to that of constant forward speed from 
longitudinally middle section. If ship motion’s 
amplitude is very large or large rudder angle is utilized, 
nonlinear ship course control model should be used. 
Based on the Nomoto’s ship’s 2nd-order nonlinear 
model, Norrbin (Fossen, 1994) gave the following 2nd-
order nonlinear model: 
 

( )NonT H K                                                     (2) 

 
3 2

3 2 1 0( )NonH                                    (3) 

 
where, 𝛼0, 𝛼1, 𝛼2 

and 𝛼3are the uncertain coefficients. 
In this study, we will research the more general case, 

namely, it is assumed uncertain nonlinear part HNon(Ψ
 
̇ ) 

in (2) is completely unknown. For the convenience, we 

introduce 𝑥1 = Ψ, 𝑥2 = Ψ
 
̇  and u = δ. Then, the Norrbin 

model can be transformed into a class of nonlinear 
system in strict-feedback form as follows: 
 

1 2

2 ( ) ( )

x x

x f x g x u




 

                                          (4) 

where, x = [𝑥1, 𝑥2] 𝑇, f(x) = HNon(Ψ
 
̇ ) /T, f(x) denotes the 

system’s  unknown   dynamics,  g(x) =  K/T.  In  this  

study, we will design ship’s course-keeping adaptive 

fuzzy controller for the uncertain nonlinear system in 

the strict-feedback form in (4). The proposed adaptive 

fuzzy controller will guarantee ultimate uniform 

boundedness of the closed-loop system. 

 

Useful lemmas: To proceed, the following lemmas 

play an important role in the manipulation of our main 

results on adaptive fuzzy controller design. 

 

Lemma 1: (Young’s inequality) (Spooner et al., 2002) 

For scalar time functions x(t) ∈⁬ and  y(t) ∈⁬, it holds 

that: 

 

2 21
2xy x y


                                            (5) 

 

for any 𝜔 >0. 

 

Lemma 2: IF there exists: 

 
2AB

u
A B 




                                                         (6) 

 

where, u is control input, A, B≠0, A, B∈⁬ and 𝜀>0, 

then 

 

Au A B                                (7) 

 

will always holds. 

 

Proof: Substitute (8) into (7) and we have 

 
2A B A B

Au A B
A B A B

  


 


   

 
 

  

Lemma 3: (Zhou et al., 2005) Let V: [0, ∞] ⟶  

satisfies the inequality: 

 

0 02 , 0,V a V b t   
                                        

(8) 

 

where  𝛼0 and 𝑏0 are positive constants. Then 

 

0
0 0 0

0

( ) ( )exp[ 2 ( )]
2

b
V t V t a t t

a
                  (9) 

 

Takagi-sugeno fuzzy system: In this section, we 

introduce the structure of the Takagi-Sugeno (T-S) 

fuzzy model (Takagi and Sugeno, 1985) in order to 

approximate unknown ship’s dynamics. T-S fuzzy rules  
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are a set of linguistic statements in the following form 

𝑅𝑗 : IF 𝑥1 is 𝐹1
𝑗
   and 𝑥2 is 𝐹2

𝑗
    and  and 𝑥𝑛  is 

𝐹𝑛
𝑗
,Then: 

 

 
0 1 1 , 1,2, , ,j j j

j n ny a a x a x j K      
 

where, ai
j
, i = 0, 1,…,n = The unknown constants to be 

adapted 

yj  = The output variable of the fuzzy system. In 

this study, it’s assumed that singleton fuzzifier and 

center-average defuzzifier are chosen. Then,  f(x) can be 

expressed as the following: 

 

1 1

1

1 1

( )

( ) ( )

( )

i

j

K n
j

j F i K
j i

j jK n
jj

F i

j i

y x

f x x y

x







 



 

 
 
 

 
 
 
 

 


 

            (10) 

 

where, 

 

0 1 1 ,j j j

j n ny a a x a x                (11) 

 

1

1 1

( )

( ) ,

( )

i

i

n
i

F i

i
j K n

j

F i

j i

x

x

x









 


 
 
 



 

                         (12) 

 

which is called fuzzy basis function. To proceed, the 

following lemma plays an important role on adaptive 

fuzzy controller design. 

 

Lemma 4: (Universal Approximation Theorem) 

(Wang, 1994) Let the input universal of discourse U be 

a compact set in . Then, for any given real 

continuous function h(x) on U and arbitrary ∀d>0, there 

exists a fuzzy system in the form of (11) such that sup  

 . 

Based on Lemma 4, it is well known that the 

aforementioned T-S fuzzy logic system is capable of 

uniformly approximating any well-defined nonlinear 

function over a compact set Uc to any degree of 

accuracy with triangular or Gaussian membership 

function. 

The membership function 𝜇𝐹𝑖

𝑗
(𝑥𝑖) in f (x) is denoted 

by some type of membership function, ζj (x) is a known 

continuous function. So (11) can be restructured into as 

follows: 

 
0 1( ) ( ) ( ) ,Z Zf x x A x A x d                           (13) 

where, 

 

 
SHIP COURSE-KEEPING ADAPTIVE FUZZY 

CONTROLLER DESIGN 
 

Design procedures of model-reference adaptive 
fuzzy controller law will be presented in this section. 

The control objective is to steer ship course  to track 

the output of the prescribed reference model and 
guarantee the ultimate uniform boundness for all the 
signals in the close-loop system. 
 
Step 1: Define two tracking errors for the state x1: 

 

                             (14) 
 

                            (15) 

 
where,  
𝑥1𝑐  =  The desired ship course 
𝑥̃1  =  Ship course tracking error 
𝑥̅1  =  The ship course’s compensated tracking errors 

 
In this study, it is assumed that 𝑥1𝑐  is continuous 

and has 1-order derivative: 
 

                                         (16) 

 

                            (17) 

 
where ξ2 will be defined in the step 2, 𝑥2𝑐 and 𝑥̇1𝑐 are 
obtained after the filtering of 𝑥2𝑐

0 , 𝛼1 is virtual control 
input, k1 > 0  is the constant to be chosen by the 
designer. Then, we obtain: 
 

                                          (18) 

 
Choose the following Lyapunov candidate 

function: 
 

                                                       (19) 

 
Then, the derivative of Lyapunov candidate 

function (20) is given by: 
 

                           (20) 

r

sup ( ) ( )
x U

h x f x d


 

 

 

1 2

1 2

0 1 2

0 0 0

1 1 1

1 2

2 2 2

1 1 2

1 2

( ) ( ), ( ), , ( ) ,

, , , ,

, , , ,

.

K

T

n

T
K

Z

n

n

Z

K K K

n

x x x x

x x x x

A a a a

a a a

a a a
A

a a a

   



   

 
 
 
 
  
 

1cx

1 1 1cx x x 

1 1 1x x  

0

1 1 1 2 2( )c ck x x    

0

2 1 2cx   

1 2 1 1 1 1cx x k x    

2

1 1

1
( )

2
V t x

1 2 1 1 1 1 1 1 1( ) cV t x x x k x x x    
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We construct the following virtual control input  𝛼1 

as follows: 

 

              (21) 

 

Substituting the virtual control input (21) into (20) 
results in: 

 

              (22) 

 
where, 𝑐1= 2𝑘1. 

 

Step 2: Similar to Step 1, two tracking errors for 𝑥2 is 
defined as follows: 

 

                                                       (23) 

 

               (24) 

 
where, 
𝑥̃2  =  Tracking error 
ξ2 =  The subsequent descriptions 
𝑥̅2 =  Compensated tracking error 

𝑥2𝑐 =  Generated by the following filter 
 

              (25) 

 

where 𝐾2 > 0  is the constant to be chosen by the 

designer. Generally, there should be 𝐾2 𝐾2. 
T-S fuzzy system (14) is used to approximate the 

unknown dynamics f (x) in ship course control system. 
Then we obtain: 

 

                          (26) 

 

where, 𝑥̅ = [𝑥̅1 𝑥̅2]𝑇, 𝑥𝑐 = [𝑥1𝑐  𝑥2𝑐]𝑇, ξ = [ξ1 ξ2] T. 
From (4) and (27), we obtain: 

            (27) 

 
where, Ω is introduced for the reason of the 
convenience: 
 

0 1 1 2

0 1 1

2

0

2

( )( ) ( )

( ) ( )

        

( )

        ( )

c c

c

c

U c U

c

x Q Q x x Q d x

x Q Q x x Q

d x

Q Q x Q x

d x x

  

  

   

 

     

  

 

  

  

           (28) 

where ‖•‖ = The vector’s Eulidean norm or matrix’s 

induced 2-norm, 𝑄1= ϑQu, ‖𝑄𝑢‖= 1,ϑ  is the unknown 

constant, whose accurate value is necessarily known  d 

is the maximal approximate error for T-S fuzzy system, 

namely d≤Δ: 

 

  

 

Next, we introduce the definition: 

 

                          (29) 

 

where 𝑘2>0  is the constant to be chosen by the 

designer, 𝑢𝑐
0 is filtered to output uc, uc= u. Generally, 

we choose 𝑢𝑐
0 uc= u. 

Combining (24), (25), (28) and (29) yields: 

 

            (30) 

 

Formulate the following Lyapunov candidate 

function: 

 

             (31) 

 

where 𝜃̃ = 𝜃∗-𝜃̂  and 𝜃̂ are the estimated value of the 

adapted parameters 𝜃∗, Γ>0  is chosen by the designer. 

The derivative of the Lyapunov candidate function is 

given by: 

 

            (32) 

 

The items 𝑥̅2 ζ (x) 𝑄1𝑥̅ and 𝑥̅2 χβ(x) in (33) are 

discussed as follows, respectively. By use of Young’s 

inequality in Lemma 1, we obtain: 

 

                  (33) 

 

where 𝜃∗min = {𝜗2, 𝜒∗}  and w>0  is chosen by the 

designer. Then by use of Lemma 2, we choose the 

following ship course-keeping control law: 

1 1 1 1ck x x   

1 1 1 1 2( ) ( )V t c V t x x  

2 2 2cx x x 

2 2 2x x  

02
2 2

2

( ) ( )c c

K
x t x t

K s
   

1 0 1

1

( ) ( ) ( )( )

           ( )

cf x x Q x x Q Q x

x Q d

 

 

  

 

1 1 0 1

1 2

1

( ) ( ) ( )( )

       ( )

( ) ( )

c

c

x g x u x Q x x Q Q x

x Q d x

g x u x Q x

 

 



   

  

  

 0

1 2max , ,

( ) 1 ( ) ( )

c cQ x x

x x x

  

   

    

  

0

2 2 2 ( )( )c ck g x u u    

2 1 2 2( ) ( )x x Q x g x u k   

2 1 2

2 1 2

1 1
( ) ( )

2 2
V t V t x    

2 1 2 1 2 2

1

2 2 2 1

( ) ( ) ( ) ( ) ( )

ˆ          

V t V t x x Q x x x x g x u

x k

 

 

   

  

   
2

* 2

2 1 2 2

*

2

* 2 *

2 2 2 2

2

2 2 2 2

2

2 2

( ) ( )
2

    ( )
2

1
  ( ) ( ) ( )

2 2

1ˆ ˆ  ( ) ( ) ( )
2 2

1
    ( ) ( ) ( )

2

T

T T

U U

T T

T T

T

x x Q x x x x x x
w

w
x Q Q x x x

w
x x x x x x x

w

w
x x x x x x x

w

x x x x x
w


    

 

    

    

    

 

 

  

  

 
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(34) 

 

and adaptive law: 

 

                     (35) 

 

where σ>0  and 𝜃0>0  are chosen by the designer. 

By completion of squares, we obtain: 

 

                          (36) 

 

For the convenience, we introduce the following 

definition: 

 

                          (37) 

 

                                         (38) 

 

Combining (33), (35)-(39) results in: 

 

                           (39) 

 

From (40) and Lemma 3, we obtain: 

 

                  (40) 

 

Then we know 𝑥̅𝑖(i= 1,2), 𝜒, 𝛾̃ belong to the 

following compact sets: 

 

                                     (41) 

 

This also indicates that 𝑥̅𝑖, 𝜒, 𝛾̃
 
in the closed-loop 

system is ultimate uniform bounded. Furthermore, it 

can be concluded from (17) and (30) that 𝑥𝑖𝑐⟶𝑥𝑖𝑐
0   can 

be arbitrarily small through appropriate choice of the 

filter’s parameters. Then, we obtain ξi⟶0 and 𝑥̅𝑖,⟶, 

𝑥̃𝑖. Hence, course tracking error 𝑥̃𝑖 is UUB and may be 

arbitrarily small by reasonably choosing design 

parameters. From (26), the filter’s output is also 

bounded. From the aforementioned, the control law 

(35) can ensure the UUB of all the signals in the closed-

loop system. 

 

SIMULATION EXPERIMENT 

 

We takes Dalian Maritime University’s training 

ship ”Yulong” as example. By use of Simulink Toolbox 

in Matlab 7.2, simulation experiments are carried out 

for the ship course controller design. Ship Yulong’s 

main particulars are as follows: design speed 14 knots, 

length between main particulars 126 m, breadth 20.8 m, 

draft 8 m, cubic coefficient 0.681, buoyant center 

position 0.25 meter, rudder area 18.8 m. From these 

parameters, K = 0.4343, T = 238.7592 could be 

calculated. The control objective is to force the ship 

course 𝑥1  to track a reference signal 𝑥1𝑐, where is the 

output of the following transfer function: 

 

                            (42) 

 

whose input 𝑥1𝑟,𝑐(t) is square wave with period 200 

seconds and amplitude 30˚. 

We use total 9 IF-THEN rules to approximate the 

nonlinear system function f(x) in the ship steering 

control system. We select membership functions for 

ship course  and rate-of-turn  as follows: 

 

             (43) 

 

                             (44) 

 

                              (45) 

 

We choose the virtual control input: 

 

                           (46) 

 

We use the following filter: 

              (47) 

 

We choose the ship course-keeping adaptive fuzzy 

controller as follows: 

 

                   (48) 

 

equipped with adaptive laws: 

 
2

2 2
ˆ 2 20 ( ) ( ) ( )

ˆ     0.05( 0.01)

Tx x x x x   



 

 
                          (49) 

2 2 2 1

2

1 1 ˆ ( ) ( )
( ) 2

ˆ ( )ˆ     ( ) tanh

Tu k x x x x x
g x w

x x
x

  







   



 
   

 

2

2 2 0

1ˆ ˆ= ( ) ( ) ( ) ( )
2

Tx x x x x
w

      
 

    
 

0 2 0 2 0 2ˆ ˆ2 ( ) ( ) ( )             

 2 1 2: min 2 ,2 , ,c k w k w    

0 21: ( ) 0.2785
2


     

2 2( ) ( )V t cV t   

 2 0 0 0( ) ( )exp ( ) ,V t V t c t t c t t    

 2( , , ) ( ) (0)ix V t V c   

1 1 ,2

0.0025
( ) ( )

0.08 0.0025
c c rx t x t

s s
    

1x 2x

 positive
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Fig. 1: Comparison of the state 𝑥1 and the desired trajectory 

𝑥1𝑐  
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Fig. 2: Control input 

 

 
 

Fig. 3: Adaptive law: 𝜃 

 

During simulation experiment, we use separate-

type model as platform, where hydrodynamic 

characteristics of hull, propeller and rudder are taken 

into consideration. Figure 1 to 3 illustrate the 

simulation results. Figure 1 shows the time response of 

actual course and desired trajectory, where real line 

represents actual course 𝑥1 and dotted line denotes 

desired trajectory 𝑥1𝑐. Figure 2 is control input, or 

rudder angle. Figure 3 is adaptive parameters 𝜃̂, 

respectively. From Fig. 1 to 3, the performance of the 

design controller is satisfactory and all the signals in the 

closed-loop system are UUB. Furthermore, fine tuning 

of 𝑘1, 𝑘2,  can achieve more precise tracking error, 

but with larger control input. 

CONCLUSION 

 
In this study, ship course-keeping adaptive tracking 

fuzzy control scheme is proposed in the framework of 
the nonlinear system in strict-feedback form. T-S fuzzy 
system is employed to approximate the unknown 
dynamics. The proposed algorithm can guarantee the 
boundedness of all the signals in the closed-loop 
system. Compensated tracking errors, not tracking 
errors, are used to construct the controller. Based on 
compensated tracking error which is not the traditional 
tracking error, the proposed design avoids the repeated 
differential of virtual control law completely, which 
make the controller structure quite simple and easy to 
implement. Simulation experiment is implemented to 
demonstrate the effectiveness of the course-keeping 
control algorithm. 
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