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RBUKF Sensor Data Fusion for Localization of Unmanned Mobile Platform 
 

Longmei Zhao, Panlong Wu and Hongjun Cao 
School of Automation, Nanjing University of Science and Technology,  

Nanjing, 210094, P.R. China 
 

Abstract: Due to the limited localization precision of single sensor, a sensor data fusion is introduced based on Rao-
Blackwellization Unscented Kalman Filter (RBUKF) that fuses the sensor data of a GPS receiver, one gyro and one 
compass. RBUKF algorithm is compared with that of Extended Kalman Filter (EKF) and Unscented Kalman Filter 
(UKF) in this study. The experimental results show that the RBUKF algorithm can more effectively improve 
tracking accuracy and reduce computational complexity than the other algorithms and has practical significance. 
 
Keywords: Data fusion, EKF, localization, RBUKF, sensor, UKF 

 
INTRODUCTION 

 
With the development of science and technology, 

the core weapon of the 21
st
 century is unmanned 

combat systems. Unmanned mobile platform has 
attracted attention in search and rescue, monitoring, 
emergency, security and surveillance applications 
(Tomic et al., 2012). For this unmanned mobile 
platform, localization is a huge research field where lots 
of studies and experiments are performed to achieve 
maximum accuracy in the determination and tracking.  

The state estimation of unmanned mobile platform 
in linear dynamical systems with nonlinear observations 
has been drawn a lot of attention in the signal 
processing community. The traditional solutions to this 
problem include linearization of the system and the use 
of Extended Kalman Filter (EKF) (Saha and Roy, 
2009). However, EKF algorithm has its limitations. On 
the hand, linear approximations of nonlinear systems 
often introduce errors which may cause the algorithm to 
diverge. On the other hand, EKF makes use of Jacobian 
matrices which may be difficult to obtain for higher 
order systems. Due to the nonlinearities of unmanned 
mobile platform target motion model, nonlinear 
filtering techniques have to be used to estimate the 
unmanned mobile platform target state. Approaches 
based on Unscented Transform (UT) resulted in a 
technique called Unscented Kalman Filter (UKF) 
(Julier and Uhlmann, 1997). Recently UKF has widely 
used in nonlinear estimations (Wan and van der Merwe, 
2000). The updating operation of UKF is realized by 
designing a few sigma points and calculating the 
propagation of these sigma points via nonlinear 
functions and is accurate up to the second order in 
estimating mean and covariance (Kandepu et al., 2008; 

Julier and Uhlmann, 2004). Moreover, the UKF can be 
further simplified by using the Rao-Blackwellization 
technique, leading to the so-called Rao-Blackwellized 
UKF (RBUKF) (Briers et al., 2003).  

Due to the limited localization precision of single 
sensor, multi-sensors fusion is utilized. When these 
sensors are attached to a mobile platform then the 
whole system is called a strapdown system (Titterton 
and Weston, 2005). Complimentary sensor types like an 
Inertial Navigation System (INS) and the Global 
Positioning System (GPS) are fused to yield a system 
which combines the positive characteristics of the 
complimentary sensors. The positive effects of this 
combination  are  well  known  and documented (Kim 
et al., 2011). GPS is widely used in the field of 
navigation, positioning, velocity measuring and 
orientation. Because its signal could be blocked by 
objects on terrain or the terrain itself, GPS downgrade 
its precision or even not be functional. To overcome 
this problem, compass can feed the system to verify 
GPS signals. So even if the GPS connection with the 
satellite fails, orientation is still functional. In this 
study, we consider applications of the RBUKF to the 
unmanned mobile platform. This RBUKF fuses the 
sensor data of a GPS receiver, one gyro and one 
compass. 

 
UNMANNED MOBILE PLATFORM 

 

This section introduces the unmanned mobile 

platform. The mobile platform is used as a test platform 

for the implementation of the sensor fusion and the 

localization is especially adapted to this mobile 

platform.
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Fig. 1: The unmanned mobile platform 

 

 
 
Fig. 2: Remote monitoring interface 

 

The dimensions of the unmanned mobile platform are 

820×430×450 mm (length × width × high). Its weight is 

38 kg, including a payload of 50 kg. The two track 

drive mobile platform can reach velocities up to 25 

m/min. The maximum climbing angle that unmanned 

mobile platform can reach 40°. The picture of the 

unmanned mobile platform is shown in Fig. 1. 

A battery provides 24 volt for platform. DC/DC 

converters offer stabilized 5, 24 and 3.3V, respectively 

for different modules of the platform. For the onboard 

data processing the microcontroller LPC2378 is used. A 

self designed PCB offers with a variety of 

microcontroller interfaces, e.g., four UARTs, six PWM 

outputs, I2C, CAN, GPIO and ADC. The platform is 

equipped with different sensors: angle gyro, compass 

and GPS receiver. The angle gyro is mounted in the 

front of the mobile platform. A front camera is 

integrated on the mobile platform for monitoring. The 

picture of the remote monitoring interface is shown in 

Fig. 2. The communication link to the control station is 

realized with a standard WLAN connection.  

A modular is running on the LPC2378 and all 

sensor interfaces and functions are encapsulated in 

modules. The modules are ordered in different layers, 

according to their application. Basic functions, like 

steering or acceleration are low level modules. Modules 

with more sophisticated capabilities are in higher levels 

and can combine low level functionalities into their 

application. The implementation of the introduced 

localization algorithm is encapsulated in a module. It 

includes some low level modules as interface to the 

sensors. Hence, in future the localization can be used by 

a path planning and a path following module to control 

the unmanned mobile platform more accurate.  
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SENSOR DATA FUSION 
 

The sensor data fusion is achieved with the use of 
Rao-Blackwellization Unscented Kalman Filter 
(RBUKF). The first subsection presents the RBUKF 
localization system and afterwards the theory of 
RBUKF will be described. 
  
RBUKF localization system: Practically, the 

unmanned mobile platform usually does not move at a 

steady rate or at a constant acceleration, thus a 

reasonable and exact motion model needs to be 

established. In this study, Current Statistical (CS) 

model is adopted as the unmanned mobile platform’s 

moving model (Zhou, 1984; Zhang et al., 2012). When 

a mobile platform moves at a rate of acceleration, the 

value of its acceleration at next time will be limited and 

be in the neighborhood of the current acceleration. 

 
State equation of the system: In order to estimate 
unmanned mobile platform’s location and velocity for 
its tracking system, the discrete state equation of the CS 
model is described as follows: 
 

( 1) ( 1, ) ( ) ( ) ( ) ( )X k F k k X k G k a k w k+ = + + +     (1) 

 

where, 

 

( ) [ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )]Tx x y yX k x k v k a k y k v k a k k v k a kθ θθ=   

 

denotes the state vectors. x (k) and y (k) are the 

unmanned mobile platform’s location along x and y 

direction, vx (k) and vy (k) are the unmanned mobile 

platform’s velocity along x and y direction, ax (k) and 

ay (k) are the unmanned mobile platform’s acceleration 

along x and y direction, � (k) is unmanned mobile 

platform’s azimuth, ��  (k) is unmanned mobile 

platform’s azimuth velocity, ��  (k) is unmanned mobile 

platform’s azimuth acceleration. F (k + 1, k) is the state 

transition matrix. ��(�) is the mean value of 

maneuvering acceleration and G (k) is the control input 

matrix. The process noise w (k) is considered as zero 

mean white Gaussian noise sequence with covariance 

matrix Q (k). Matrices F (k + 1, k), G (k), ��(�) are 

specified as follows: 
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where, ax, ay, ��  are the reciprocal of the maneuver 
time constant and T is the sampling interval. 
 
Measurement equation of the system: In the 
localization of unmanned mobile platform system, 
measurement vector is: 
 

Z = [xGPS, yGPS, 	, �
]
T
  

 
where, 
xGPS & yGPS : Unmanned mobile platform’s 

localizations measured by GPS receiver 

	 : Unmanned mobile platform’s angle 

velocity output from angle gyro 

θm : Unmanned mobile platform’s azimuth 

output from compass 
 
The theory of the sensor data fusion is shown in Fig. 3. 

The measurement equation of the mobile platform is as 

follows: 
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Fig. 3: Date fusion 

 

where, 

  

( ) [ ( ) ( ) ( ) ( )]T
x y

n k n k n k n k n kω θ=  

 

the measurement noise n (k) is considered as zero mean 

white Gaussian noise sequence with covariance matrix 

R (k). 

 

The theory of RBUKF: Rao-Blackwellization 

Unscented Kalman Filter (RBUKF) is essentially a 

combined filter of Unscented Kalman Filter (UKF) and 

Kalman Filter (KF). It utilizes characteristics of the 

model to increase localizing precision and reduce 

computation complexity. 

The RBUKF algorithm can be derived as follows: 

  

• Parameters initialize: 

 

(0)ˆ(0) ( )Xx E=                                (3) 

 
T
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• Calculation singular value and Selection of sigma 

points: 
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• Time update equations: 
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• Measurement update equations: 
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where, 

L : System’s dimension 

Wi : A set of scalar weights 

α : Constant determines the spread of the sigma points 

around X and is usually set to 1e - 4≤α≤1  

к : A secondary scaling parameter 

β : Used to incorporate prior knowledge of the 

distribution of x (for Gaussian distributions, β = 2
 

is optimal) 

λ = α
2
 (L + к) - L : Scaling parameter 

 

SIMULATION RESULTS 

 

The simulation is accomplished with a computer 

named Lenovo IdeaPad Y570 which configures an intel 

CORE i5-2400M @2.30GHz dual CPU and a 4GB 

memory. In this section, the performance of the 

RBUKF algorithm is evaluated and compared with 

EKF and UKF algorithm. The initial value of the state 

vector is X (0) = [0 1 0 0 1 0 π/4 0 0]
T
. The 

measurement error ��
=  ���

= 0.1 �/��, ���
=

0.1 ���/��, �� = 0.1 ���/�, �� = 0.5 �: 

 

α = α = α = 1s
x y θ
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Fig. 4: The mobile platform target trajectory 

 

 
 
Fig. 5: Position estimation error in x direction 

 

The sampling interval T = 1s. The initial state 

estimation error covariance is: 
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Figure 4 shows the unmanned mobile platform’s 

target trajectory. Figure 5 and 6 show the position 

estimation   error   of  third  algorithms  along  x  and  y 

 
 
Fig. 6: Position estimation error in y direction 

 

 
 
Fig. 7: Velocity estimation error in x direction 

 

 
 
Fig. 8: Velocity estimation error in y direction 

 

direction respectively. Figure 7 and 8 show the velocity 

estimation error of third algorithms along x and y 

direction, respectively. Figure 9 shows the angle 

estimation error of third algorithms. Table 1 is the 

comparison of the average estimation error and the time 

consuming by the third  algorithms.  The  total  position 
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Table 1: Comparison of the average estimation error and the time consuming 

Algorithms δx (m) δy (m) δvx (m/s) δvy (m/s) Time (s) 

EKF 0.5077 0.4621 0.3991 0.3437 0.0485 

UKF 0.5631 0.4809 0.3159 0.2585 0.2685 

RBUKF 0.3498 0.2825 0.1218 0.0964 0.2499 

 

 
 
Fig. 9: Angle estimation 

 

tracking error of RBUKF is reduced by 39.28% and 

34.51% than UKF and EKF, respectively. The velocity 

tracking error is also reduced by 61.95% and 70.51% 

than UKF and EKF, respectively. Also, the computing 

time of RBUKF is less than that of UKF. 

Due to the fact that the sate model is linear, the 

measurement model is nonlinear, a RBUKF instead of 

an UKF can be used. RBUKF is essentially a combined 

filter of Kalman Filter for the linear part (time update) 

and Unscented Kalman Filter for the nonlinear part 

(measurement update). As a result, the quasi Monte 

Carlo variance and computational complexity is 

reduced (Fritsche and Klein, 2009). In order to compare 

the computational complexity between the RBUKF and 

UKF, for their measure-update algorithms are the same 

(Li et al., 2008). In the RBUKF algorithm: 

 

( / 1) ( / 1) ( 1) ( / 1)TP k k F k k P k F k k Q− = − − − +  

 

we only need to do L dimensional matrix 

multiplication, but in the UKF algorithm: 

 
2

0

ˆ ˆ( / 1) ( ( / 1) ( / 1))( ( / 1) ( / 1))
L

c T

i i i

i

P k k W k k x k k k k x k kχ χ
=

− = − − − − − −∑   

 

we need to do 2L+1 dimensional matrix multiplication. 

Obviously, RBUKF can reduce much computation 

work which contributes efficiency improvement 

compare with original UKF. So the computational 

complexity has been greatly decreased. 

From the simulation results, we can see that the 

RBUKF algorithm has the highest tracking precision 

and the less computational complexity than other 

algorithms. 

CONCLUSION 
 

In this study a new RBUKF variant is described to 
fuse a GPS receiver, one gyro and one compass 
yielding the global position of unmanned mobile 
platform. Compared to UKF and EKF, RBUKF is not 
less computational cost, but also higher accuracies. The 
filtering performance comparison of the UKF, EKF and 
RBUKF are analyzed through simulation. The 
simulation results show that the RBUKF algorithm is an 
effective algorithm for unmanned mobile platform 
tracking. 
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