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Preliminary Evaluation of Artificial Bee Colony Algorithm When Applied to Multi 
Objective Partial Disassembly Planning 

 
Gianluca Percoco and Marialuisa Diella  

Department of Mechanical Engineering, Mathematics and Management Japigia Avenue,  
182 (Italian), 70126 Bari, Italy 

 

Abstract: The aim of this study is the first evaluation of the Artificial Bee Colony Algorithm when applied to multi 
objective partial disassembly planning. Several methodologies have been proposed by academic and industrial 
researchers for developing and implementing automated disassembly planning and the research literature is very 
extensive. In particular, nature-inspired heuristic techniques seem to be very promising and performing well to 
optimize the disassembly planning problem, among them, the Artificial Bee Colony (ABC) approach, which has not 
yet been tested. The authors propose the implementation of a discrete ABC algorithm to plan the disassembly 
sequence of products, following these steps: matrix system modelling, multi-objective function and solution search 
with an ABC algorithm. In particular the study provides details of the algorithm and heuristic rules, inspired by the 
behaviour of bees during food search, which is a very efficient natural process. Two case studies have been selected 
and reported to test the efficiency of the algorithm, while further research is required to compare ABC to other 
efficient heuristics. 
 
Keywords: Artificial bee colony, disassembly planning, optimization 

 
INTRODUCTION 

 
In recent years, the concept of eco-efficiency has 

been developed, summarized in the expression “greater 
profit with lower impact”, achieving the aims of 
economic and environmental excellence. It is therefore 
necessary to produce smaller quantities of waste and to 
reduce the use of raw materials, saving money and 
generating profits (Lee and Shih, 2012). In this context, 
disassembly tends to be costly, because of the 
increasing complexity and high variety of products. As 
a consequence disassembly process planning is very 
important in minimizing maintenance cost and 
recovering end-of-life products. Because of the 
complexity of disassembly, numerical optimization 
methods are often the best choice to plan this process.  

In this study a numerical approach to disassembly 
sequence planning is proposed, based on the 
optimization strategy of Artificial Bee Colony (ABC) 
whose power to search optimal assembly sequencing 
problems (Brajevic and Tuba, 2012; Akay and 
Karaboga, 2010) is known. In the case of partial 
disassembly sequencing, the research space is greater 
than that of simple permutations of a sequence, because 
the algorithm must search also for partial disassembly, 
on the basis of relational constraints. However (ABC) 
has strong robustness, fast convergence, high flexibility 
and low number of setting parameters. Premature 

convergence can be an issue but in industrial 
applications, such as disassembly sequencing, sub-
optimal solution are normally taken into consideration 
as valid solutions. 

This approach, if used in the design phase, would 
make possible design choices in accordance with the 
guidelines of Design for Disassembly (DFD) (Mule, 
2012) Partial disassembly determines the optimal 
disassembly level and the optimal sequence to reach 
this disassembly level (Zhang et al., 1997; Tang et al., 
2002). 

In Zussman and Zhou (1999) the optimal 
disassembly sequence is identified using a Petri-net that 
incorporated the probabilistic success rate of 
disassembly operations. In Sarin et al. (2006) a 
traveling salesman problem to achieve optimal or near-
optimal solutions is used and in Lambert (2007) an 
exact method relied on a Bourjault's tree is presented. 
In Tripathi et al. (2009) a self-guided ants method to 
determine the optimal level of disassembly based on 
warranty and field service data is presented, in 
Edmunds et al. (2011) a hierarchical GA with an 
AND/OR graph is used to solve the partial disassembly 
problem. Other studies report (Meacham et al., 1999) a 
hierarchical product tree representation combined with 
a linear time algorithm to determine the revenue 
maximizing disassembly level, a Dynamic 
Programming (DP) in Teunter (2006). 
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Disassembly process planning includes various 
aspects, among which the analysis of the optimal level 
of disassembly is very important, i.e., the level that 
makes it advantageous to bear the costs of the process 
itself. In fact, for each component or sub-assembly, 
there is a different end-of-life perspective. The 
disassembly sequence is the main aspect of this 
planning system, because it has a great impact on 
efficiency and cost. The difficulty of planning increases 
with the complexity of the product. In relation to 
environmental protection, the purpose of disassembly is 
summarized as follows: obtaining parts, components 
and subassemblies for reuse in new products; recovery 
of recyclable materials; removal of hazardous or toxic 
materials; access to parts or components that may be 
subject to service operations (repair, maintenance and 
diagnostics) (Lambert, 1997). 

Profitability of disassembly is influenced by the 
efficiency of the process, product characteristics and the 
properties of various components. The problem must be 
addressed considering economic, technological and 
environmental aspects related to product end of life. 
Generally, the disassembly planning includes all the 
problems relating to the dismantling of assemblies 
(Lambert, 2003): constraints and ways of dismantling, 
handling of components, collision conditions, 
generation and optimization of the disassembly 
sequence and analysis of the optimal disassembly level. 

In Karaboga et al. (2012), studies about ABC are 
grouped into three categories: comparisons and 
modifications, hybrid models and applications; 
according to this classification the present study deals 
with a new application. 

In Wang and Zhang (2011) disassembly strategy 

based on bionic disassembly hive model is presented. 

The disassembly space is modelled as a hive, the 

judgment of disassembly direction and some other 

problems are transferred into the evaluation of ant bee 

groups' migration routes. However this study is 

dedicated to a clustering more than sequencing 

problem. In Ilgin and Gupta (2010) a review of research 

developments in green production and recovery of 

products, with hundreds of publications divided into 

four main areas: environmentally conscious product 

design, reverse and closed loop supply chain, rework 

and disassembly. In the last area a broad and 

comprehensive overview of process optimization is 

presented.  
 

MATERIALS AND METHODS 
 

The approach used in this study for the resolution 
of the problem of disassembly planning can be divided 
into the following steps: 
 

• System modelling 

• Multi-objective function 

• Searching for the best solution 

System modelling: The product to be disassembled is 

considered as a set of independent components. 

Considering a generic collection of n components, it is 

possible to number them from 1 to n. The following 

information can be associated with each item: 

 

• Time of disassembly, required for the removal of 

the component, which may be resumed by 

specialized libraries 

• Cost of disassembly, for its part, the cost of 

dismantling operations, to the other, from 

assessments on the recovery plan at the end of life 

• Environmental impact 

 

As regards the feasibility of the sequences, the 

representation of the proposed system is based on two 

Boolean matrices used also for assembly sequencing 

(Dini and Santochi, 1992): the interference and 

connection matrices. 

The first matrix identifies which component can be 

an obstacle for the removal of other components on a 

selected direction. For example the case of a product 

consisting of n components the interference matrix in 

the X-direction, will be: 

V 
X
 = [v

x
ij ] with j = 1, 2, …, n and i = 1, 2, …, n, 

with v
x

ij = 1  if   the i
th

  component  prevents  removal 

of  the   j-th  component  in  the  X-direction,  otherwise 

v
x

ij = 0. Similar matrices can be defined for the other 

directions. 

As regards the connection matrix, with m being the 

number of identified connections in the product, the 

elements of the matrix will be: 

U = [uij] with j = 1, 2, …, m and i = 1, 2, …, m 

with ui j= 1 if the connection i is an obstacle for 

removing connection j, resulting in a precedence 

constrain, ui j = 0 on the contrary. 

 

The multi-objective function: The multi-objective 

function used in this work has been proposed in 

Giudice and Fargione (2007); it is expressed through 

the weighted sum of three factors: 

  

• The disassembly cost, TS, closely dependent on 

disassembly time for each component 

• The cost of the product at end-of-life, Ceol 

• The environmental impact of the product end-of-

life, EIeol 

 

Ψ = φ1 
.
TS + φ2 

.
 (C)eol + φ3

.
EIeol 

 

φ1, φ2, φ3 are non-homogeneous weights to be 

normalized. For each component that belongs to the 

disassembly sequence there is a standardized set of 

three factors. The best solution is the one with the 

minimum value of the function ψ. 

Considering a product, it is necessary to determine 

the recovery plan (reuse, recycling or disposal) and 
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submit it; that plan must balance the cost of 

disassembly and recovery.  

The terms of the ψ function also depend on: 
 

• Material properties and number of components 

• The level of disassembly 

• The final destination of the disassembled 
components (reuse, recycle or disposal). 

 
TS, disassembly cost: For the definition of this factor, 
the execution time of each disassembly task must be 
known. Considering the i

th
 component, its cost of 

disassembly is defined as follows: 
 

TSi = Csmonti
.
∑ ( tsi + δ 

. 
cd i) 

 
where the sum is extended to all items that should be 
removed before removing the i

th
 component, including 

the i
th

 component:  
 
Csmonti  =  The cost of labour per hour 
tsi  =  The disassembly time required for the 

removal of the i
th

 component 
cd i  =  A binary value equal to 1 if there is 

direction change during the disassembly 
of the product for the i

th
 component, 0 

otherwise 
δ  =  A penalty coefficient for direction 

changes 
Ceoli  =  End-of-life of product 
 

Considering the i
th

 component, its end-of-life cost 
is defined as follows: 
 

Ceoli = αi
. 
(-Cprodi) +βi

. 
[Csmali

. 
(1-ξi) 

. 
Wi + (Crcli-Rrcli) 

. 

ξi
. 
Wi] + γi

. 
Csmali

. 
Wi 

 

For each component the coefficients αi, βi and γi are 

called recovery planning coefficients and are binary 

indices taking values 0 or 1, depending on the schedule 

to which the i
th

 component is intended: recovery or 

disposal. Their sum is equal to 1 for each component 

and their value is fixed, depending on strategic recovery 

choices that may be: 

 

• αi = 1 , βi = 0 , γi = 0 Reuse 

• αi = 0 , βi = 1 , γi = 0 Recycling 

• αi = 0 , βi = 0 , γi = 1 Disposal 

 

EIeol,: Environmental impact of product at end-of-

life: This contribution to the objective function 

quantifies environmental effects associated to the end-

of-life phase of each component.  

The environmental impact of end-of-life can be 

calculated as follows: 

 

EIeoli = αi
. 
(-EIprodi) +βi

. 
[eismali

. 
(1- ξi) 

. 
Wi +eircli

. 
ξi

. 

Wi] +γi
. 
eismali

. 
Wi 

where, 

ξi =  The recyclable fraction of the i
th

 component 

eismali  =  The environmental impact of disposal  

eircli  =  The environmental impact of recycling of 

material per unit weight and for the i
th

 

component 

 

Solution search: The constraints reduce the complexity 

of the problem; then it is convenient to use heuristic 

methods to study complex products, mainly to simplify 

the problem by introducing additional assumptions and 

rules, which return sub optimal solutions. However, 

they can be used in industrial reality (Kishore et al., 

2005).  

The selection among all possible solutions 

identified as feasible is through the multi-objective 

function. Each sequence is associated with the value 

calculated for the cost of disassembly. The algorithm 

terminates when sequence generation finds the solution 

with the best value of the objective function.  

 

Discrete artificial bee colony: The algorithm proposed 

in this study is based on the social behaviour of bees, 

reproducing the process of seeking nectar,initially 

proposed for numerical optimizationin (Giudice and 

Fargione, 2007) and used also for unconstrained and 

constrained optimization problems (Karaboga, 2005), . 

Cooperation between insects decreases the cost of 

finding new sources of food (new viable solutions) and 

increases the quality of the sources themselves (best 

solution). A strategy generates various solutions that, 

through selection criteria, lead to the solution that 

optimizes the objective function.  

The colony of bees chooses the most profitable 

path, between different sources of nectar. The exchange 

of information between individuals is the most 

important event in the formation of collective 

knowledge. The most important part of the hive, 

regarding the exchange of information, is the dance 

floor, where communication between the bees about the 

quality of food sources, takes place through a procedure 

called the waggle dance. 

A bee colony can extend its search for long 

distances (more than 10 miles) and in many directions 

simultaneously to exploit a variety of food sources 

(Karaboga and Basturk, 2007; Von Frisch, 1976).  

Fields of flowers with high amounts of food should 

be visited by more bees, while the fields with less 

nectar or pollen should receive fewer bees (Seeley, 

1996; Bonabeau et al., 1999). 

The foraging process begins in a colony with the 

Scout Bees that move randomly from one field of 

flowers to another (Camazine et al., 2003; Wong et al., 

2009). 

When they return to the hive, the scouts who have 

found a field of high quality flowers, higher than a 

fixed  value,  deposit their food and perform the waggle  
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Fig. 1: Discrete ABC algorithm flow chart 

 
dance. This dance enables the colony to evaluate the 
different fields, both for the quality of the food they 
provide and the amount of energy required to pick it up. 
After the dance, the dancer returns to the field of 
flowers with follower bees that were waiting in the hive 
to receive information and leave only to the most 
promising fields. Cooperation between artificial bees 
produces a rapid discovery of feasible solutions, as well 
as the discovery of better solutions to the problem. 

This study proposes a particular application of 
ABC: Aimed to solve the problem of finding the 
optimal or sub-optimal disassembly sequence for an 
efficient planning process. 

As in the case of the travelling salesman problem, 
the disassembly process planning falls within the 
category of discrete problems. For this reason, a 
discrete ABC model has been implemented and applied 
to appropriate case studies. The algorithm (Fig. 1) can 
be subdivided into several steps:  
 
Step 1: The first step is the generation of the initial 

population, the set of bees to start searching, 
each one associated to a food source, 
consisting of random solutions matching the 
geometric and technological constraints of the 
product. 

Step 2:  Function evaluation for each sequence 
Step 3: Identification of the best sequence 
Step 4: Transition rule (Fig. 2), to transform the initial 

population by generating a new population 
(new set of bees, each corresponding to a new 
food source) 

 
The transition is a procedure that allows us to get a 

new population. Through this rule, "solution-bees" can 
evolve towards new candidate solutions to solve the 
problem. The procedure does not apply to solutions that 
have been abandoned. Given the starting solution that 
must be transformed, the first component of the new 
sequence is chosen randomly. Subsequently, the 
algorithm determines the set of non-assigned 
components, defined as the set A. When all the 
components have been assigned, the algorithm proceeds 
to the examination of the next sequence. 

In addition, another set F is defined, containing the 
next component to be assigned to a given partial 
sequence, as can be deduced from the best sequence. F 
will be a set containing a single component, or void if 
no more elements are available and the complete 
disassembly has been reached. 

Given the sets A and F, if � ∩ � ≠ ∅ , the 
component belonging to F will have a greater chance of 
being selected. The probability of the j-th component, 
not yet assigned, will be calculated as: 
 

Pj= [λ]
 α . 

[1/Cij]
 β   

If j ∈ � ∩ � 
 

Pj= [(1-λ)/(c-1)]
 α . 

[1/Cij]
 β 

If j ∈ � ⋀ j∉ � 
 
where c is equal to the number of not yet assigned 
components, the probability λ has been set to 95% after 
a trial and error procedure, while Cij is the disassembly 
time, sequence-dependent, where i is the last 
component assigned and j the next component to which 
the probability refers. The weights α and β, defined in 
the initial part of the algorithm, have been assumed 
equal to1 and 10 respectively.  

On the other hand if � ∩ � = ∅ , each component j 

has the same probability of being chosen: 
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Fig. 2: Transition rule flow chart 

 
Pj= [1/ λ]

 α . 
[1/Cij]

 β  

 
Subsequently, the probability is normalized by 

calculating �� =
�

∑ �
�
���

 with 0 <�� < 1  

Based on these normalized probabilities ��, the 

algorithm randomly chooses the next component in the 
sequence and the cycle can be repeated again until all 
the sequences of the new population are completed. 

Step 5: The evaluation of the new population. Before 

evaluating the value of the function associated 

with each sequence, it must be considered 

where components were placed, respecting the 

constraints represented by matrices U and V. 

There might be only a fraction of the solutions 

feasible; for a component placed properly one 

of the possible end of life destinations (reuse, 

recycling or disposal) must be chosen, while a 

disposal process can be hypothesized for those 

not positioned correctly, without any 

disassembly operation 

Step 6:  If the rule has led to a sequence with a higher 

value of the objective function (in the case of 

disassembly a lower value of TS), the earlier 

sequence will be replaced by the new one 

because the new bee will have found a more 

profitable source of food 

Step 7:  If in the previous step any modifications in 

bees have occurred, the next step is the so-

called execution of the waggle dance; 

otherwise, the execution of the algorithm will 

continue on the previous population, jumping 

directly to 

Step 8:  After the execution of the dance, only a part of 

the bees will continue execution of the 

algorithm, those with a higher Ψ value than the 

average of the colony. At the end of this 

selection process, there will be a new 

population constituted exclusively of solution-

bees able to "survive". 

 

The first phase of the waggle dance is the 

comparison between the old and the new populations. 

The phase of execution and observation of the dance is 

the phase where the previous population is replaced by 

the new, if the new bee is better than preceding one. If 

the "solution-bee" is improved, the new solution 

replaces the old and is selected to be a dancer. On the 

other hand if the "solution-bee" is not improved, the 

previous solution is preserved. 

If at least one solution-dancer is available, the 

algorithm proceeds with the second phase of the waggle 

dance. The pursuit of the solution indicated by a 

companion during the dance is the step where the 

"solution-bee" decides whether or not to abandon the 

search. 

To make that decision, the average profitability of 

the colony is evaluated. If the cost of a single sequence 

is lower than or equal to 99% of the average cost of the 

colony, it will certainly be kept and will continue 

searching within the algorithm.  

As regards all the other solutions that do not satisfy 

this condition, their fate within the algorithm will 
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depend in part on their profitability and partly by a 

random choice.  

This last step is regulated by an 

favours the conservation of sequences with lower cost:

If cost is higher than 1% but lower than 2.5% of 

the average profitability of the colony, the solution will 

have the probability of 2% of being abandoned; if cost 

is higher of 2.5% but lower than 5% of the average cost 

of the colony, the solution will have 18% probability of 

being abandoned; if cost is higher than 5% of the 

average cost of the colony, the solution will have 80% 

chance of being abandoned. These values have been set 

using a trial and error procedure. 

At the end of this last phase of the 

new population will be available, ready for the next 

cycle. 

The cycle starts again and repeats the entire 

execution of the algorithm until the stop condition is 

verified. 

 

Step 9: When the stop condition is satisfied, the 

algorithm terminates by identifying the best 

solution. The solution inside the final 

population, which presents the best value of 

the objective function, is taken as the final 

solution of the algorithm. Otherwise, the cycle 

repeats with the surviving population, starting 

from Step 2. 

 

RESULTS 

 

The algorithm has been tested on several case 

studies; among them two cases has been selected and 

reported below. These cases were chosen to show how 

the algorithm behaves on products that reach the 

minimum of the function when completely 

disassembled or when the minimum of the function is 

reached when disassembly is not complete. In this 

preliminary study the products have been simplified 

grouping together several components into sub

assemblies. 

 

The first case study: The first case study is shown in 

Fig. 3. The entire product has been split into ten 

subassemblies that will be treated as single components.

  

Matrix modelling: The first step consists in achieving 

the interference and connection matrices. As shown in 

Fig. 4, there are several relationships between 

components. The interference matrix

compiled in each direction for disassembly. Reducing 

the problem to only two dimensions, there are two 

matrices to be filled: one in the vertical direction and 

the other in the horizontal. It is possible to superimpose 

the two matrices, thus obtaining a single Boolean 

matrix, where  the presence of the element ' 1 
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depend in part on their profitability and partly by a 

This last step is regulated by an if-then rule that 

favours the conservation of sequences with lower cost: 

If cost is higher than 1% but lower than 2.5% of 

the average profitability of the colony, the solution will 

being abandoned; if cost 

is higher of 2.5% but lower than 5% of the average cost 

of the colony, the solution will have 18% probability of 

being abandoned; if cost is higher than 5% of the 

average cost of the colony, the solution will have 80% 

ng abandoned. These values have been set 

At the end of this last phase of the waggle dance, a 

new population will be available, ready for the next 

The cycle starts again and repeats the entire 

algorithm until the stop condition is 

When the stop condition is satisfied, the 

algorithm terminates by identifying the best 

solution. The solution inside the final 

population, which presents the best value of 

taken as the final 

solution of the algorithm. Otherwise, the cycle 

repeats with the surviving population, starting 

The algorithm has been tested on several case 

studies; among them two cases has been selected and 

e cases were chosen to show how 

the algorithm behaves on products that reach the 

minimum of the function when completely 

disassembled or when the minimum of the function is 

reached when disassembly is not complete. In this 

ve been simplified 

grouping together several components into sub-

The first case study is shown in 

Fig. 3. The entire product has been split into ten 

subassemblies that will be treated as single components. 

The first step consists in achieving 

the interference and connection matrices. As shown in 

Fig. 4, there are several relationships between 

interference matrix should be 

compiled in each direction for disassembly. Reducing 

blem to only two dimensions, there are two 

matrices to be filled: one in the vertical direction and 

the other in the horizontal. It is possible to superimpose 

the two matrices, thus obtaining a single Boolean 

the presence of the element ' 1 ' indicates  

 
Fig. 3: First case study 

 

 
Fig. 4: Interference matrix for first case study

 

 
Fig. 5: Connection matrix for first case study

 

that there is a relationship between corresponding 

elements, in either the horizontal or vertical direction. 

On the other hand the element ' 0 ' expresses a lack of 

interference on both directions. 

The connection matrix is obtained putting in 

evidence: the presence of unitary elements in the 

interference matrix (Fig. 5) shows the existence of a 

connection between the elements.  

 

 

Fig. 4: Interference matrix for first case study 

 

for first case study 

there is a relationship between corresponding 

elements, in either the horizontal or vertical direction. 

On the other hand the element ' 0 ' expresses a lack of 

The connection matrix is obtained putting in 

sence of unitary elements in the 

interference matrix (Fig. 5) shows the existence of a 
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Fig. 6: Timing of sequence-dependent disassembly: 

case study 

 
Table 1: Disassembly directions and time of each element: First case 

study  

Component Disassembly time (s) Orientation

1 85.00 Vertical

2 52.00 Horizontal
3 62.00 Vertical

4 63.45 Vertical

5 33.30 Horizontal
6 27.55 Vertical

7 71.30 Vertical
8 29.45 Horizontal

9 68.70 Vertical

10 35.00 Horizontal

 
Table 2: Costs of disposal, recycling and profit derived from the relative 

weight of each item: First case study 

Component Disposal cost (/kg) Recyclineg profit (/t)

1 0.127 0.0842 

2 0.127 0.0842 

3 0.127 0.0842 

4 0.127 0.0842 

5 0.127 0.0842 

6 0.127 0.1855 

7 0.127 0.0842 

8 0.127 0.1855 

9 0.127 0.0842 

10 0.127 0.0842 

 

As regards the time of each disassembly operation, 

each time has been assumed, based on an approach 

similar to the MTM (Methods and Time Measurement) 

method. It has been assumed for each direction change 

there is an average increase of disassembly time equal 

to 5 sec. These hypotheses and assumptions lead to the 

data necessary for the assessment of disassembling 

operation time for each part as summarized in Table 1:

Of course, disassembly times are sequence

dependent and a matrix must be built in order to 

indicate the disassembly time of each component when 

starting from each configuration. These times are 

shown in Fig. 6, where the influence of direction 

change on single disassembly times is evident. 

 

Objective function: The values used for C

hypotisedafter    consulting    a    specialized
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dependent disassembly: Second 

Disassembly directions and time of each element: First case 

Orientation Material 

Vertical Steel 

Horizontal Steel 
Vertical Steel 

Vertical Steel 

Horizontal Steel 
Vertical Steel 

Vertical Steel 
Horizontal Steel 

Vertical Steel 

Horizontal Steel 

Costs of disposal, recycling and profit derived from the relative 

Recyclineg profit (/t) Wight (kg) 

1.05 

0.12 

0.7 

0.936 

0.76 

0.34 

1.8 

0.6 

0.24 

0.3 

regards the time of each disassembly operation, 

each time has been assumed, based on an approach 

similar to the MTM (Methods and Time Measurement) 

method. It has been assumed for each direction change 

there is an average increase of disassembly time equal 

to 5 sec. These hypotheses and assumptions lead to the 

data necessary for the assessment of disassembling 

operation time for each part as summarized in Table 1: 

Of course, disassembly times are sequence-

dependent and a matrix must be built in order to 

cate the disassembly time of each component when 

starting from each configuration. These times are 

shown in Fig. 6, where the influence of direction 

change on single disassembly times is evident.  

The values used for Ceol, 

specialized   industrial  

 
Fig. 7: Best solutions in 10 runs: First case study

 
Table 3: Time, disassembly direction, and material of components: 

Second case study 

Component Disassembly time (s) Orientation

1 3.60 Horizontal

2 12.70 Horizontal

3 12.40 Horizontal
4 116.70 Horizontal

5 261.30 Horizontal

6 120.30 Horizontal
7 76.40 Horizontal

8 81.50 Vertical

9 15.60 Horizontal
10 47.10 Horizontal

 

partner, have been summarized in Table 2 and sorted 

for each component: cost of disposal, profit resulting 

from the sale of components for recovery, the weight of 

the component. To reduce the complexity of the task 

each item has been considered as if it consisted

single material. The entire weight of the element is 

intended for recycling or disposal. Reuse costs have 

been assumed equal to infinity, because of the small 

size of the components and a sure non

reusing.  

 

Finding the best sequence: 

population was used to start the algorithm, created in 

the Matlab ® environment, starting with a population of 

20 random initial solutions, iterating for 20 cycles. The 

minimum value of the objective function found by the 

algorithm is 0.2357 €/piece. Figure 7 shows the best 

solutions found in 10 runs.  

The same minimum value was found for different 

solutions in 100% of cases (10 launches of the 

algorithm). The minimum was found in the first 5 

cycles in 80% of cases.  

The behaviour of solution-bees of several program 

launches is reported in Fig. 8, considering one single 

example run. 

Starting from random solutions, in this sample run 

only a few "solution-bees ' (6 of 20) reach the minimum 

value and terminate 20 cycles. The time necessary for 

each run is less than 5 sec on a 3.8 Ghz Pentium 4 CPU.

 

case study 

Time, disassembly direction, and material of components: 

Orientation Material 

Horizontal Steel 

Horizontal Plastic 

Horizontal Steel 
Horizontal Steel 

Horizontal Steel 

Horizontal Plastic 
Horizontal Plastic 

Vertical Steel 

Horizontal Steel 
Horizontal Plastic 

, have been summarized in Table 2 and sorted 

for each component: cost of disposal, profit resulting 

from the sale of components for recovery, the weight of 

the component. To reduce the complexity of the task 

each item has been considered as if it consisted of a 

single material. The entire weight of the element is 

intended for recycling or disposal. Reuse costs have 

been assumed equal to infinity, because of the small 

size of the components and a sure non-convenience in 

Finding the best sequence: A random initial 

population was used to start the algorithm, created in 

the Matlab ® environment, starting with a population of 

20 random initial solutions, iterating for 20 cycles. The 

minimum value of the objective function found by the 

€/piece. Figure 7 shows the best 

The same minimum value was found for different 

solutions in 100% of cases (10 launches of the 

algorithm). The minimum was found in the first 5 

bees of several program 

launches is reported in Fig. 8, considering one single 

Starting from random solutions, in this sample run 

bees ' (6 of 20) reach the minimum 

value and terminate 20 cycles. The time necessary for 

each run is less than 5 sec on a 3.8 Ghz Pentium 4 CPU. 



Res. J. Appl. Sci. Eng. Technol.,

 
Fig. 8: Evolution example of Ψ for each "solution

 

 
Fig. 9: Second case study 

 

 
Fig. 10: Interference matrix for the second case 
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Fig. 8: Evolution example of Ψ for each "solution-bee" in one launch: first case study 

 

 

matrix for the second case study 

 
Fig. 11: Connection matrix for the second case study

 

 
Fig. 12: Timing of sequence-dependent disassembly: 

case study 

 

Second case study: The second case study is composed 

by more than one hundred components that

grouped into 10 subassemblies considered as single 

components (Fig. 9). 

 

 

for the second case study 

 

dependent disassembly: Second 

The second case study is composed 

by more than one hundred components that have been 

grouped into 10 subassemblies considered as single 
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Fig. 13: Evolution example of the multi-objective function for each "solution

 
Table 4: Costs of disposal, recycling and profit derived from the relative 

weight of each item: Second case study 

Component Disposalcost (/kg) Recyclineg profit (/t)

1 0.127 0.0842 

2 0.127 0.1855 

3 0.127 0.0842 

4 0.127 0.0842 

5 0.127 0.0842 

6 0.127 0.1855 

7 0.127 0.1855 

8 0.127 0.0842 

9 0.127 0.0842 

10 0.127 0.1855 

 

Matrix modelling: Interference and connection 

matrices are shown in Fig. 10 and 11 for the second 

case study.  

 

The objective function: time and cost recovery: 

this case study two disassembly directions are 

considered, vertical and horizontal. Estimated data for 

each element are shown in Table 3. 

Sequence-dependent disassembly times are shown 

in Fig. 12. In this specific case it is supposed that only 

component 8 needs one direction change and then only 

component 8 affects sequence-dependent disassembly 

costs. The choice of a unique direction change

made in order to have high difficulty in finding global 

vs local minima to test the algorithm correctly.

Since the materials of the components are just 

plastic or steel, the data used for Ceol

Table 4, following the same assumption a

first case study.  
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objective function for each "solution-bee" in one launch: Second case study

disposal, recycling and profit derived from the relative 

Recyclineg profit (/t) Wight (kg) 

0.6 

0.1 

0.1 

0.7 

1.3 

0.4 

0.8 

0.9 

0.12 

0.5 

Interference and connection 

matrices are shown in Fig. 10 and 11 for the second 

cost recovery: For 

this case study two disassembly directions are 

considered, vertical and horizontal. Estimated data for 

dependent disassembly times are shown 

in Fig. 12. In this specific case it is supposed that only 

component 8 needs one direction change and then only 

dependent disassembly 

costs. The choice of a unique direction change has been 

made in order to have high difficulty in finding global 

vs local minima to test the algorithm correctly. 

Since the materials of the components are just 

eol are shown in 

Table 4, following the same assumption as made for the 

Finding the best sequence: Also in this case, results 

are expressed for algorithm runs related to 20 random 

initial solutions and 20 cycles. The best sequences have 

been identified as [9 10 7 3], [3 1 2 7 5 4] and [7 8 5 

10], not including a complete disassembly. Further 

considerations can indicate [3 1 2 7 5 4] as the best 

solution from an environmental point of view, being the 

deepest disassembly level obtained. The trend of 

solution-bees, considering one example run is s

Fig. 13. 

All solution-bees, except 1 and 13, start with high 

multi-objective function values. This leads to the result 

that only one bee, 20, manages to reach the optimum 

value of 0.37562 €/pz. In this case also, the time 

necessary for each run is between 4 and 5 seconds on a 

3.8 Ghz Pentium 4 CPU. 

 

CONCLUSION

 

The stability of the ABC approach for product 

disassembly planning must be further enhanced by 

studying a wider variety of product types and 

configurations. In both the case studies optimal o

optimal solution is obtained: in the third generation or 

13
th

 generation. Whenever ABC algorithm reaches 

solution in less than 100 iterations, the algorithm does 

not have time to properly start searching. However it 

can be concluded that its speed must be improved to be 

exploitable and competitive with other metaheuristics 

 

bee" in one launch: Second case study 

Also in this case, results 

are expressed for algorithm runs related to 20 random 

initial solutions and 20 cycles. The best sequences have 

been identified as [9 10 7 3], [3 1 2 7 5 4] and [7 8 5 

0], not including a complete disassembly. Further 

considerations can indicate [3 1 2 7 5 4] as the best 

solution from an environmental point of view, being the 

deepest disassembly level obtained. The trend of 

bees, considering one example run is shown in 

bees, except 1 and 13, start with high 

objective function values. This leads to the result 

that only one bee, 20, manages to reach the optimum 

€/pz. In this case also, the time 

between 4 and 5 seconds on a 

CONCLUSION 

The stability of the ABC approach for product 

disassembly planning must be further enhanced by 

studying a wider variety of product types and 

configurations. In both the case studies optimal or near-

optimal solution is obtained: in the third generation or 

generation. Whenever ABC algorithm reaches 

solution in less than 100 iterations, the algorithm does 

not have time to properly start searching. However it 

ust be improved to be 

exploitable and competitive with other metaheuristics 



 

 

Res. J. Appl. Sci. Eng. Technol., 6(17): 3234-3243, 2013 

 

3243 

such as Genetic Algorithms or Simulated Annealing. 

Further research should be addressed to speed up this 

nature inspired technique to the Disassembly 

Sequencing Problem.  

 

ACKNOWLEDGEMENT 
 

The authors wish to thank “Globecosrl” 
(www.globeco.info), specialized in waste management, 
for their suggestions regarding data shown in Table 2 
and 4. 

 

REFERENCES 
 

Akay, B. and D. Karaboga, 2010. Artificial bee colony 
algorithm for large-scale problems and engineering 
design optimization. J. Intell.  Manuf.,  23(4): 
1001-1014. 

Bonabeau, E., M. Dorigo and G. Theraulaz, 1999. 
Swarm Intelligence: From Natural to Artificial 
Systems. Oxford University Press, New York. 

Brajevic, I. and M. Tuba, 2012. An upgraded Artificial 
Bee Colony (ABC) algorithm for constrained 
optimization problems. J. Intell. Manuf., DOI: 
10.1007/s10845-011-0621-6. 

Camazine, S., J. Deneubourg, N.R. Franks, J.G. Sneyd, 

Theraula and E. Bonabeau, 2003. Self-

Organization in Biological Systems. Princeton 

University Press, Princeton. 

Dini, G. and M. Santochi, 1992. Automated sequencing 

and subassembly detection in assembly planning. 

CIRP Ann-Manuf. Technol., 41(1): 1-4. 

Edmunds, R., M. Kobayashi and M. Higashi, 2011. 

Generating optimal disassembly process plans from 

AND/OR relationships using a hierarchical genetic 

algorithm interdisciplinary design. Proceeding of 

the 21st CIRP Design Conference, pp: 16. 

Giudice, F. and G. Fargione, 2007. Disassembly 

planning of mechanical systems for service and 

recovery: A genetic algorithms based approach. J. 

Intell. Manuf., 18(3): 313-329. 

Ilgin, M.A. and S.M. Gupta, 2010. Environmentally 

conscious manufacturing and product recovery 

(ECMPRO): A review of the state of the art. J. 

Env. Manage., 91: 563-591. 

Karaboga, D., 2005. An idea based on honey bee 

swarm for numerical optimization. Technical 

Report-TR06. Computer Engineering Department, 

Engineering Faculty, Erciyes University. 

Karaboga, D. and B. Basturk, 2007. A powerful and 

efficient algorithm for numerical function 

optimization: Artificial Bee Colony (ABC) 

algorithm. J. Global Optim., 39(3): 459-471. 

Karaboga, D., B. Gorkemli, C. Ozturk and N. 

Karaboga, 2012. A comprehensive survey: 

Artificial Bee Colony (ABC) algorithm and 

applications. Artif. Intell. Rev., Doi: 

10.1007/s10462-012-9328-0. 

Kishore, K.P., A.J.D. Lambert and S.M. Gupta, 2005. 
Disassembly Modeling for Assembly, 
Maintenance, Reuse and Recycling. CRC Press, 
Boca Raton, Florida, USA. 

Lambert, A., 1997. Optimal disassembly of complex 
products. Int. J. Prod. Res., 35(9): 2509-2523. 

Lambert, A., 2003. Disassembly sequencing: A survey. 
Int. J. Prod. Res., 41(16): 3721-3759. 

Lambert, A.J.D., 2007. Optimizing disassembly 
processes subjected to sequence-dependent cost. 
Comput. Oper. Res., 34(2): 536-55. 

Lee, S.C. and L.H. Shih, 2012. A novel heuristic 
approach to determine compromise management 
for end-of-life electronic products. J. Oper. Res. 
Soc., 63(5): 606-619. 

Meacham, A., R. Uzsoy and U. Venkatadri, 1999. 
Optimal disassembly configurations for single and 
multiple products. J. Manuf. Syst., 18(5): 311-322. 

Mule, J.Y., 2012. Design for disassembly approaches 
on product development. Int. J. Sci. Eng. Res., 
3(6). 

Sarin, S., H. Sherali and A. Bhootra, 2006. A 
precedence-constrained asymmetric traveling 
salesman model for disassembly optimization. IIE 
Trans., 38(3): 223-237. 

Seeley, T.D., 1996. The Wisdom of the Hive: The 
Social Physiology of Honey Bee Colony. 
Massachusetts, Harvard University Press, 
Cambridge. 

Tang, Y., M. Zhou, E. Zussman and R. Caudill, 2002. 
Disassembly modeling, planning and application. J. 
Manuf. Syst., 21(3): 200-217. 

Teunter, R.H., 2006. Determining optimal disassembly 
and recovery strategies. Omega, 34(6): 533-537. 

Tripathi, M., S. Agrawal, M.K. Pandey, R. Shankar and 
M.K. Tiwari, 2009. Real world disassembly 
modeling and sequencing problem: Optimization 
by Algorithm of Self-Guided Ants (ASGA). Robot. 
Comput-Integ. Manuf., 25(3): 483-496. 

Von Frisch, K., 1976. Bees: Their Vision, Chemical 
Senses and Language. Cornell University Press, 
Ithaca. 

Wang, W. and J. Zhang, 2011. Research on bionic hive 
modularization technology of disassembly. Appl. 
Mech. Mater., 44-47: 106-111. 

Wong, L.P., M.Y.H. Low and C.S. Chong, 2009. A bee 
colony optimization algorithm with the 
fragmentation state transition rule for traveling 
salesman problem. Retrieved from: 
http://kecubung.webfactional. com/a-bee-colony-
optimization-algorithm-with-the-fragmentation-
state.pdf. 

Zhang, H.C., T.C. Kuo, H. Lu and S.H. Huang, 1997. 

Environmentally conscious design and 

manufacturing: A state-of-the-art survey. J. Manuf. 

Syst., 16(5): 352-371. 

Zussman, E. and M. Zhou, 1999. A methodology for 

modeling and adaptive planning of disassembly 

processes.    IEEE    T.  Robot.  Autom., 15(1): 

190-194. 


