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Research Article 
A Characterization of Sporadic Janko Group J1 

 

Deqin Chen and Shitian Liu 
School of Science, Sichuan University of Science and Engineering, Zigong Sichuan, 643000, China 

 

Abstract: Let G be a group and �(G) be the set of element orders of G. Let kє �(�) and sk be the number of 
elements of order k in G. Let nse (G) = {sk| k �(�) }. In Khatami et al. (2011) and Liu (2012c) the authors proved 
that L3(2)  and L3(4)    are unique determined by nse (G). In this study, we prove that if G is a group such that nse 
(G) = nse (J1), then G ≅ J1. 
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INTRODUCTION 

 
If n is an integer, then we denote by �(	) the set of 

all prime divisors of n. Let G be a group. The set of 
element orders of G is denoted by �(G). Let k ∈ �(G) 
and Sk be the number of elements of order k in G. Let 
nse (G) = {Sk| k ∈ �(G)}. Let �(�)  denote the set of 
prime p such that G contains an element of order p. A 
finite group G is called a simple Kn -group, if G is a 
simple group with |�(�)| = n. Thompson posed a very 
interesting problem related to algebraic number fields 
as follows Shi (1989). 
 
Thomson' problem: Let T(G) ={(n, s | n ∈ ω(G) and 
Sn ∈ nse (G)}, where Sn  is the number of elements with 
order n. Suppose that T(G) = T (H). If G is a finite 
solvable group, is it true that H is also necessarily 
solvable? 

It was proved that: Let G be a group and M some 

simple Ki -group, i = 3, 4, then G ≅ M if and only if |G| 

= |M| and nse (G) = nse (M) (Shao et al., 2009, 2008). 

And also the groups A12, A13 and L5 (2) are 

characterizable by order and nse (Guo et al., 2012; Liu, 

2012a; 2012b), respectively). Recently, all sporadic 

simple groups are characterizable by nse and order 

(Khalili et al., 2013)). 

Comparing the sizes of elements of same order but 

disregarding the actual orders of elements in T (G) of 

the Thompson Problem, in other words, it remains only 

nse (G), whether can it characterize finite simple 

groups? Up to now, some groups especial for PSL (2,q), 

can  be  characterized  by only the set nse (G) (Khalili 

et al., 2011; Shen et al., 2010), respectively). 

The author has proved that the groups L3(4)  and 

L2(16) are characterizable by nse (Liu, 2012b, 2013) 

respectively). In this study, it is shown that the group J1, 

which the number of the set of the same order is 10, 

also can be characterized by nse (J1), that is. 

 
MAIN THEOREM 

 
Let G be a group with nse (G) = nse (J1).  

Then G ≅ J1. In the proof of the Main Theorem, we 
use the technique of Khalili et al. (2003) to make the 
proof simple. Namely, we investigate the influence of 
the primes 7, 19 on the set {2, 3, 5, 7, 11, 19} and the 
order of elements of the group. Hence we only consider 
the sets {2}, {2, 3}, {2, 5}, {2, 11}, {2, 3, 5}, {2, 3, 
11}, {2, 3, 5, 11} and � (G) = {2, 3, 5, 7, 11, 19}. 
Finally, we get the desired result by order 
consideration. 
 
Some lemmas: 
Lemma 1:  Frobenius (1895) Let G be a finite group 
and m be a positive integer dividing |G|. If 

, then  

 
Lemma 2:  Miller (1904) Let G be a finite group and 

 be odd. Suppose that P is a Sylow p-

subgroup of G and n = p
5
m  with (p,m) = 1. If P is not 

cyclic and s>1, then the number of elements of order n 
is always a multiple of P

s
. 

 
Lemma 3:  Shen (2010) Let G be a group containing 
more than two elements. If the maximal numbers of 
elements of the same order in G is finite, then G is 
finite and  

 

Lemma 4:  Hall (1959) [Theorem 9.3.1]) Let G be a 

finite solvable group and |G| = mn, where 

, (m,n) = 1. Let  and hm 

( ) { | 1}
m

mL G g G g= ∈ = || ( ) |mm L G

( )p Gπ∈

2| | ( 1)G s s≤ −

1

1
r

rm p pα α= L 1{ . , }rp pπ = L
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be the number of Hall � -subgroups of G. Then 

 satisfies the following conditions for all 

: 

• (mod ) for some Pj 

• The order of some chief factor of G is divided by 

 

 

PROOF OF THEOREM 

 

Let G be a group such that nse (G) = nse (J1) and sn 

be the number of elements of order n. By Lemma 3 we 

have G is finite. We note that ( )ns k nφ= , where k is 

the number of cyclic subgroups of order n. Also we 

note that if n>2, then ( )nφ   is even. If ( )m Gω∈ , 

then by Lemma 1 and the above discussion, we have: 

  

                 (1) 

 

We rewrite the main theorem here to read easily. 

 

Theorem:  Let G be a group with nse (G) = nse (J1) = 

{1, 1463, 5852, 11704, 15960, 23408, 25080, 27720, 

29260, 35112}. Then G ≅ J1. 

 

Proof:  We prove the theorem by first proving that 

( )Gπ ⊆  {2, 3, 5, 7, 11, 19}, second showing that |G| = 

|J1| and so G≅ �� 

By (1.1), ( )Gπ ⊆ {2, 3, 5, 7, 11, 13, 19, 29}. If 

m>2, then 
 (m) is even, then 2s  = 1463, 2 ( )Gπ∈ . 

In the following, we prove that 13, 29 ( )Gπ∉ . 

If 13 ( )Gω∈ , then by (1.1), 
 

= 35112. If 

2 13 ( )Gω⋅ ∈ , then 
26s ∈  nse (G). Therefore 

. Now we consider Sylow 13-subgroup 

13
P  acts fixed point freely on the set of elements of 

order 2, then 
13 2| ||P s  ( = 1463), a contradiction. 

Similarly 29 ( )Gω∉ . In fact, by (1.1), 29s
 

= 

29260. 

If 2 29 ( )Gω⋅ ∈ , then 58s ∉nse (G). Therefore 

2 29 ( )Gω⋅ ∉ . Now we consider Sylow 29-subgroup 

29P  acts fixed point freely on the set of elements of 

order 2, then 
29 2| ||P s  ( = 1463), a contradiction. 

Therefore,  {2, 3, 5, 7, 11, 19}. By (1.1), 

we have that S3 = 5852 or 23408,  = 11704, 
 
= 

25080, S11 
= 15960 and S19 = 27720. 

If 3.19 � ω (G), then by (1.1)  

and  and so we have nse (G), a 

contradiction. Hence 3.19 ∉ ω (G). 

If 5.19 ∈ω (G), then by (1.1) 95|1+s5+s19+s95 and 

 and so we have s95 ∉  nse (G), a 

contradiction. Hence . 

Similarlly, we can prove that  and 

 

If , then  and so . 

Similarly if , then ; if , 

then ; if , then . 

If , then . If , 

then nse (G), therefore a = 1. Similarly, if 

, then a = 1. 

Therefore, we have that ; 

with p = 2, 3, 5, 7, 11, 19;  with 

p = 7, 19;  with p = 5, 11. 

If , then exp (P5) = 5 or 25. 

If exp (P5) = 5, then (= 11705) and so 

. It follows that  and 

so 7, 11, 19 . 

If exp (P5)   = 25, then ( = 39425) 

and so ,  

If , then (= 25081) and so 

. So  and so 5, 11, 19 . 

If , then exp (P11) = 11, 121. 

If exp (P11) = 11, then (= 11705) and so 

. It follows that  and so 3, 7, 19

. 

If exp (P11) = 121, then ( = 

43681) and so . Hence  and 

so 3, 7 . 

If 19 , then as , we have that 

 (= 27721) and . Hence 

. So 5, 7, 11 . 

Therefore we only consider that the set  is 

{2}, {2, 3}, {2, 5}, {2, 11}, {2, 3, 5}, {2, 3, 11}, {2, 3, 

5, 11} and  = {2, 3, 5, 7, 11, 19}. So we divide 

the proofs into the following cases. 

 

Case a:  = {2}. In this case, ω(G) ⊆{1, 2,  2
2
, 2

3
, 

2
4
, 2

5
}. But the number of the set of nse (G) is 

10, so we get a contradiction. 

1

1
s

m s
h q q

ββ= L

{1,2, , }i s∈ L

1i

iq
β ≡ jp

i

iqβ

|

( ) |

|

m

dd m

m s

m s

φ

 ∑

13s

2 13 ( )Gω⋅ ∉

( )Gπ ⊆

5s 7s

3 19 5757 |1 s s s+ + +

57(57) | sφ 57s ∉

95(95) | sφ

5 19 ( )Gω⋅ ∉

7 19 ( )Gω⋅ ∉
11 19 ( )Gω⋅ ∉

2 ( )a Gω∈
2

(2 ) | a

a sφ 0 5a≤ ≤

3 ( )
a

Gω∈ 1 3a≤ ≤ 5 ( )a Gω∈
1 2a≤ ≤ 11 ( )a Gω∈ 1 2a≤ ≤

7 ( )a Gω∈ 1 2a≤ ≤
27 ( )Gω∈

27
s ∉

19 ( )a Gω∈
6 4

2 ,3 ( )Gω∉
19 ( )p Gω⋅ ∉ 2 ( )p Gω∉

3 ( )p Gω∉
5 ( )Gπ∈

5 5| ||1P s+

5| | 5P = 5 5
/ (5) 2 7 11 19n s φ= = ⋅ ⋅ ⋅

( )Gπ∈

5 5 25| ||1P s s+ +

5| | 25P = 2

5
2 3 7 11n = ⋅ ⋅ ⋅

7 ( )Gπ∈
7 7| ||1P s+

7| | 7P = 2

7 2 5 11 19n = ⋅ ⋅ ⋅ ( )Gπ∈

11 ( )Gπ∈

11 11| ||1P s+

11| | 11P = 2

11 2 3 7 19n = ⋅ ⋅ ⋅

( )Gπ∈

11 11 121| ||1P s s+ +

11| | 121P = 2 2

11 2 3 7n = ⋅ ⋅

( )Gπ∈
( )Gπ∈ 219 ( )Gω∉

1 9 1 9| | | 1P s+ 19| | 19P =
2

19 2 5 7 11n = ⋅ ⋅ ⋅ ( )Gπ∈

( )Gπ

( )Gπ

( )Gπ
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Case b:  = {2,3}. Since , then exp (P3) 

= 3, 9, 27. So we consider the following 

subcases. 

 

First let S3 = 5852. 

• Subcase b.1.1: exp ( ) = 3.  (= 5853) 

and so . So . It follows that 7, 

11, 19 , a contradiction. 

• Subcase b.1.2: exp (P3) = 9. (= 

30933) and so |P3| = 9. Whence  

and so 5, 11, 19 ∈ �(G), a contradiction. 

• Subcase b.1.3: exp ( ) = 27. We know that 

. If , then we have a contradiction 

since nse (G). 

Second let S3  
= 23408. 

• Subcase b.2.1: exp ( ) = 3, (= 

23409) and so . 

 

If |P3| = 3, then . It follows that 

5, 7, 11, 19 ∈ �(G), a contradiction. If |P3| = 9, then |G| 

= 175560+5852k1+11704k2+15960k3+23408k4+ 

25080k5+27720k6+29260k7+35112k8 = 2
l
.3

2

 with 

 and l are nonnegative integers and 

. Since 175560 |G| = 

175560+35112 1 8, we have l = 15. Hence 

|G|=175560+5852 1k +11704 2k +15960 3k +23408 4k

+25080 5k +27720 6k +29260 7k +35112 8k  = 
15 22 3⋅ , 

but the equation has no solution in . If  or 

, then by Lemma 2,  for some integer 

t. But the equation has no solution in N. 

 

• Subcase b.2.2:  exp ( ) = 9. We have that 

(= 51129) and so . Whence 

 and so 5, 7, 11 , a 

contradiction. 

• Subcase b.2.3:  exp (P3) = 27. We know that 

. If , then  = 27720 and so 

. It follows that 5, 7, 11 , a 

contradiction. 

 

If , then by Lemma 2, we also get a 

contradiction. 

 

Case c:   = {2, 5}. 

If exp (P5}) = 5, then (= 11705) and so

. Since , 7, 11, 19 , a 

contradiction. 

If exp ( ) = 25, then (= 39425) 

and so . Since , 3, 7, 11 , 

a contradiction. 

Case d:   = {2, 11}. 

 

If exp (P11) = 11, then ( = 15961) and so 

. So  and 3, 7, 19 , a 

contradiction. 

If exp (P11) = 121, then ( = 

43681) and so . So  and 3, 7

, a contradiction. 

 

Case e:  = {2, 3, 5}. 

 

The proof is the same as Case c. 

 

Case f:  = {2, 3, 11}. 

 

The proof is the same as Case d. 

 

Case g:  = {2, 3, 5, 7, 11, 19}. 

 

We know that and . 

We first show that  and . 

If 5.7∈ω (G), set P and Q are Sylow 7-subgroups 

of G, then P and Q are conjugate in G and so  

and  are conjugate in G. Therefore we have that 

, where k is the number of cyclic 

subgroups of order 5 in . As , 

100320  and then  for some integer t, 

but the equation has no solution in N, a contradiction. 

Hence . It follows that the group P5  acts 

fixed point freely on the set of order 7 and so (= 

25080). Hence  = 5. 

Similarly since , then we have that 

the groupP11  acts fixed point freely on the set of order 

19 and so  ( = 27720). Hence  = 11. 

Since , the group  acts fixed point 

freely on the set of order 19 and so ( = 27720). 

Hence . 

Similarly since 3 19 ( )Gω⋅ ∉ , we also have . 

Therefore . But 

= 175560 = . Thus 

( )Gπ 43 ( )Gω∈

3P 3 3| ||1P s+

3
| | 3P =

3
2 7 11 19n = ⋅ ⋅ ⋅

( )Gπ∈

3 3 9| ||1P s s+ +
2

3 2 5 11 19n = ⋅ ⋅ ⋅

3P

3

3| | 3P ≥
3

3| | 3P =

27s ∈

3P 3 3| ||1P s+
4

3| || 3P

3

3 2 5 7 11 19n = ⋅ ⋅ ⋅ ⋅

1 8
, ,k kL

1 8
0 1k k≤ + + ≤L ≤ 22 3l ⋅ ≤

⋅ ⋅

Ν 3

3| | 3P =
4

3| | 3P =
3 3| |s P t=

3P

3 3 9| ||1P s s+ +
3| | 9P =

2

3 2 3 5 7 11n = ⋅ ⋅ ⋅ ⋅ ( )Gπ∈

3

3
| | 3P ≥

3

3| | 3P =
27s

2

3 2 5 7 11n = ⋅ ⋅ ⋅ ( )Gπ∈

4

3| | 3P ≥

( )Gπ

5 5| ||1P s+

5
| | 5P = 5 2 7 11 19n = ⋅ ⋅ ⋅ ( )Gπ∈

5P 5 5 25| ||1P s s+ +

5| | 25P = 2 2

5
2 3 7 11n = ⋅ ⋅ ⋅ ( )Gπ∈

( )Gπ

11 11| ||1P s+

11
| | 11P = 2

11 2 3 7 19n = ⋅ ⋅ ⋅ ( )Gπ∈

11 11 121| ||1P s s+ +

11| | 121P = 2 2

11 2 3 7n = ⋅ ⋅

( )Gπ∈

( )Gπ

( )Gπ

( )Gπ

7| | 7P =
19| | 19P =

5
| | 5P =

11| | 11P =

( )GC P

( )GC Q

35 7(35)s n kφ= ⋅ ⋅

7
( )

G
C P 7 7

/ (7) 4180n s φ= =

35| s
35

100320s t=

5 7 ( )Gω⋅ ∉

5 7| ||P s

5| |P

11 19 ( )Gω⋅ ∉

11 19| ||P s
11| |P

2 19 ( )Gω⋅ ∉ 2P

2 19| ||P s
3

2| || 2P

3| | 3P =

| | 2 3 5 7 11 19mG = ⋅ ⋅ ⋅ ⋅ ⋅
( )k

ks nse G
s

∈∑
32 3 5 7 1119 2 3 5 7 1119m⋅ ⋅ ⋅ ⋅ ⋅ ≤ ⋅ ⋅ ⋅ ⋅ ⋅
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. So since nse (G) = nse 

(J1), we have from (Khalili et al., 2013), that . 

This completes the proof.  
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