
Research Journal of Applied Sciences, Engineering and Technology 6(20): 3852-3858, 2013

DOI:10.19026/rjaset.6.3601

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2013 Maxwell Scientific Publication Corp.

Submitted: January 17, 2013 Accepted: February 22, 2013 Published: November 10, 2013

Corresponding Author: Chen Peihua Research Institute of Robotics, Shanghai Jiao Tong University, Tel.: 021-54742932(830)
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

3852

Research Article

An RTM based Distributed Simulation System for Guide Robot

Chen Peihua, Cao Qixin, Yang Yang and Leng Chuntao
Research Institute of Robotics, Shanghai Jiao Tong University, Shanghai, China, 200240

Abstract: In order to enhance the robot system integration and development for guide robot, a distributed simulation
system was developed in this study using RTM (Robot Technology Middleware) technology, which is an open

software platform for robot systems. The RT (robot technology) system of an adapter, a controller and the robot,

together with other CORBA objects, was developed to connect the graphical programing interface with 3D
simulator to set up an RTM based distributed simulation system. Simultaneously, the application of the distributed

simulation system also confirms the controlling of the real robot utilizing the RT system. The proposed distributed

simulation system based on RTM can obviously accelerate the software component development as well as the
system integration for guide robot, which will certainly lower the cost of the development of new robot application

systems.

Keywords: Distributed simulation system, graphical programming, RT component, RTM

INTRODUCTION

Recently, with the development of the Internet and

communication technologies, the quantity of research
and development projects which aim at making robots

and robot systems more intelligent by distributing their

necessary resources over a network, is increasing (Kim
et al., 2004; Quintas et al., 2011; Zhang et al., 2009b).

In the near future, human beings will live in a world

where all objects such as electronic appliances are
networked to each other and robots will provide us with

various services by any device through network as we

need (Kim, 2005). However, as the level of structural
and behavioral complexity increases in robot systems,

the need for technologies supporting the software

module development and the integration of those
systems has expanded (Mohamed et al., 2008). To the

component development, a systematic methodology and

infrastructure for the local and distributed composition
of modular functional components is needed. And for

the distributed simulation system integration, robot

middleware technology enables the development of
robot systems from the traditional close mode to an

open, comprehensive and integrated mode. The

standardization of components and a lot of underlying
service will achieve the rapid development and

maintenance of robot systems.

A distributed simulation system has been
developed by our URPE (Ubiquitous Robotics and

related Programing Environment) project since 2005

(Chen et al., 2009; Qiu et al., 2005). At the same time,

we also developed hardware models, key technologies
and implemented CORBA (Common Object Request

Broker Architecture) based servers for the robot

systems (Zhang et al., 2009a). In this study , in order to
solve the increasing functional component development

and the system integration of guide robot and take full

advantages of the network and computer technologies,
we use the RTM (Robot Technology Middleware)

technology (Ando et al., 2005) to set up several key

modular software components and build a distributed
simulation system for guide robot. The distributed

simulation system can help the developers improve the

efficiency of functional component and application
development.

ROBOT TECHNOLOGY MIDDLEWARE

RTM: Robot Technology Middleware (RTM) is

developed in collaboration between the Japanese

Ministry of Economy, Trade and Industry (METI), the
Japan Robot Association (JARA) and National Institute

of Advanced Industrial Science Technology (AIST), to

promote the application of RT in various fields. To
make robot systems be language and platform

independent, RTM has been developed based on

CORBA using a number of specifications at the
distributed middleware interface level. A prototype

implementation named Open RTM-aist (http:

//www.openrtm.org/.) is released (Ando et al., 2008).
The main goals of RTM are to build robots and their

functional parts in a modular structure at the software

Res. J. Appl. Sci. Eng. Technol., 6(20): 3852-3858, 2013

3853

Fig. 1: RTC architecture (OpenRTM-aist official website)

Graphical

Programing Interface

UnitEmulator

Controller VirtualRobotAdapter

RTC RTC RTC

Vcl

UnitEmulator

MnpR

UnitEmulator

MnpL

UnitEmulator

HndR

UnitEmulator

HndL

...

setPos()

3D Viewer

Simulator

ControllerBridge

parameters

Model definition

VRML: JLSR

Viewer and

other servers

UI

(1)

(2) (3)

：CORBA object

：RT Component

(1)：CORBA interface
(2-3)：RTC Data Port

Fig. 2: System architecture of the distributed simulation system

level as well as to simplify the process of building
robots by combining selected modules simply, which

allow system designers or integrators to build

customized robots for a variety of applications in an
effective and efficient manner.

The RT-Middleware would support the

construction of various networked robotic systems by
the integration of various network enabled robotic

elements, which are called RT-Components.

RT component: Towards robotic system development
and modular design features, Japan has proposed the

Robot Technology Component (RTC) (Ando et al.,

2006), which is based on the CORBA specification
and has made some simplifications and

complementation. Using RT-Middleware to integrate

different RTCs will speed up the robot system
components integration from the module level.

RTC is the basic unit in a modular robot system. It

is used for functional encapsulation of different

hardware and software resources and provides

CORBA-compliant RTC interfaces for the external

and realizes plug and play system integration through

the CORBA bus. Figure 1 shows the architecture

block diagram of the RT Component.

RT Component standardizes interfaces, hides

implementation and possesses network transparency

and efficient communication channel. RT Component

of the robot system can be implemented by different

programming languages, run in different operating

systems, or connected in different networks to

communicate with each other.

SYSTEM ARCHITECTURE

For the purpose of making modular software

components’ development faster and robot system

integration easier, we developed the distributed

simulation system as shown in Fig. 2.

Graphical Programing Interface is a programing

tool used to specify the robot’s tasks by using a list of

Created

Inactive Active

Error

State
machine

Interfaces for introspection and configuration

Res. J. Appl. Sci. Eng. Technol., 6(20): 3852-3858, 2013

3854

Fig. 3: Graphical programming interface

Table 1: Configuration of unit emulator

No Parameter Attributes

1 Name service IP Local host

2 Name service port 2809

3 Unit name MnpL

4 Viewer name Sim3D.object

5 Segment period 100

motion icons (Fig. 3). Once an icon is programmed, it
can be saved into an icon list. With this tool, the user

can program the robot to complete multiple motion

tasks. As a user-programming tool, it provides a user
interface to send commands to the related units of the

robot or even a networked sensor and integrates them

with the user’s commands to the RTCs via Unit
Emulator.

Unit Emulator is a motion engine that can power

on/off, servo on/off the robot units (such as Mobile

Unit, Right Arm Unit, Left Arm Unit, etc.) and translate

the commands from the graphical programing interface

to the set Pos command. UnitEmulator is implemented

as a CORBA object, as presented in Fig. 2. In a

UnitEmulator server, we need to set the configuration

of Unit Emulator, as shown in Table 1. In Table 1, we

set the “NameService IP” to “localhost”, “NameService

Port” to “2809”, “Unit Name” to “MnpL” (means left

arm here), “Viewer Name” to “Sim3D.Object” and

“Segment Period” to “100”.
The RT Component of Adapter is developed to

receive the commands and data from the UnitEmulator

and transform them to a right format or order which the
Controller RTC can use. In order to connect with
UnitEmulator, we create CORBA interfaces which are
defined in a IDL (Interface Definition Language) file
(Aleksy et al., 2005).

In Controller RTC, some algorithms like path
planning, motion planning can be implemented through
using the data sent by the Adapter RTC and the sensors’
feedback, furthermore, the results will be output to the
VirtualRobot RTC in 3D Viewer part. The
VirtualRobot RTC is set up by utilizing the Controller
Bridge tool with the controller Bridge parameters in
OpenHRP (Kanehiro et al., 2004) and connected to the
Controller RTC at the same time.

In 3D Viewer part, there are other CORBA server
objects, which could load in the robot and the
environment as VRML models, display the simulation,
calculate the collision detection, etc.

By using the RTM technology, we can focus on the
developments of the modular components’ functions,
distribute them around a networked environment and
integrate them as an RT system easily.

APPLICATION OF THE DISTRIBUTED

SIMULATION SYSTEM

The distributed simulation system has been

applied to a Guide Robot named Jiao Long Service
Robot (JLSR) (Fig. 4). This robot is developed by
Research Institute of Robotics, Shanghai Jiao Tong

Res. J. Appl. Sci. Eng. Technol., 6(20): 3852-3858, 2013

3855

Fig. 4: JLSR robot and degree of freedom configuration

Fig. 5: JLSR robot welcomes a guest and picks up a cup of tea

Adapter valueseqo

transfseqo

setPos()

Excecution context

Write

(a) JLSRAdapter RTC

Controller

q_cur_in transfseqo

torqueq_ref_in

transfseqi

Excecution context

Read Write

(b) JLSR controller RTC

Fig. 6: Structures of JLSRA dapter and JLSR controller RT components

Res. J. Appl. Sci. Eng. Technol., 6(20): 3852-3858, 2013

3856

Activate

the RTC

Run execution

context

Cmd=0?
Yes

Write data to

OutPort

No

Deactivate?
No

Deactivate

the RTC

Yes

Fig. 7: Flow diagram of JLSRA dapter RTC’s execution loop

University, for a robot restaurant. It has four

omnidirectional wheels in the base, 6 DOFs (degrees of

freedom) in one arm, one DOF in one gripper and one

DOF in the head part. Take an application of this robot

for example, when a guest comes, the JLSR will make a

warm welcome firstly, then introduce the restaurant and

pick up a cup of tea to the guest, as interpreted in Fig. 5.

The two pictures in Fig. 5 illustrate the simulation of

the JLSR robot that welcomes a guest (here we use

another robot instead) at the door and picks up a bottle
from a table.

In this application, there are three kinds of RT

Components, which are JLSRA dapter, JLSR

controller, JLSR robot. The structures of JLSRAdapter
RTC and JLSR controller RTC can be seen in Fig. 6.

The JLSRAdapter RTC receives the command of

setPos from UnitEmulator COBAR servers, which
includes the unit name and its reference positions a
current time and transforms them to the transformation
matrix of the vehicle unit and the angles of all joints,

after which it writes the data to its OutPort (transfseqo
and valueseqo respectively). The flow diagram of the
above procedure is shown in Fig. 7. In Fig. 7, after

JLSRAdapter RTC is activated, it will run the
execution context periodically. In one loop of the
execution, it first check the value of “Cmd”, it will
write the data to “transfseqo” OutPort if “Cmd” equals

to 1 and to “valueseqo” OutPort if “Cmd” equals to 2
and wait if the value of “Cmd” is 0.

The JLSRController RTC reads the data from its
InPort which is sent by the JLSRAdapter RTC and
JLSR robot RTC and transforms them to current torque
values through a PD controller as its core logic, as
shown in the equation (1). The JLSRController RTC
then output the results to JLSR robot RTC for
simulation:

ref() (-)ref cur cur τ P q q D q q
 (1)

Born Initialize

entry/rtc_init_entry

Starting

entry/

rtc_starting_entry

Active
entry/rtc_active_entry

do/rtc_active_do

exit/rtc_active_exit

Aborting

entry/

rtc_aborting_entry

Error
entry/rtc_error_entry

do/rtc_error_do

exit/rtc_error_exit

Exiting

entry/

rtc_exiting_entry

end

Stopping

entry/

rtc_stopping_entry

FatalError
entry/rtc_fatal_entry

do/rtc_fatal_do

exit/rtc_fatal_exit

Ready
entry/rtc_ready_entry

do/rtc_ready_do

exit/rtc_ready_exit

error

success

Unknown

error

su
ccess

rtc_
reset

rtc_reset

rtc
_

sto
p

rtc_exit

success

error

rtc_exit

rt
c_

ki
ll

success

rt
c
_

st
a
rt

start

Fig. 8: JLSR controller RT component transition

Res. J. Appl. Sci. Eng. Technol., 6(20): 3852-3858, 2013

3857

Fig. 9: RT system and CORBA servers of the distributed simulation system

Fig. 10: The JLSR robot picks up a cup of tea

where, 𝑃 ∈ 𝑖𝑛×𝑛 and 𝐷 ∈ 𝑖𝑛×𝑛 are the P/D gain
parameters, qref ∈ 𝑖𝑛 is the reference (desired) joint

values, qcur ∈ 𝑖𝑛 is the current joint values and �̇�𝑟𝑒𝑓 ∈
𝑖𝑛/�̇�𝑐𝑢𝑟 ∈ 𝑖𝑛 is the time derivative of qref /qcur.

The transition process of JLSR controller RTC is

shown in Fig. 8. It was developed based on RT

middleware (Open RTM-aist 1.0.0) (Ando et al., 2005).

The transition process includes:

 Rtc-starting-entry: JLSRController initialization
read in PD gain values and the torque limit value.

 Rtc-stopping-entry: stop reading the InPorts of

this RTC, calculating the toque values and writing

to the OutPorts.

 Rtc-active-do: read in the values from

JLSRAdapter RTC, calculate the output torque

values and write to the OutPorts of this RTC.

We distributed the simulation system to be

executed on two computers including a notebook with
Linux Ubuntu 10.04 (2.20GHz, Core2, 4GB RAM) and
a Dell desktop with Window 7 Professional (3.10GHz,
Core i5, 4GB RAM). The notebook’s IP is
192.168.1.101, while the desktop PC’s IP is 10.0.0.113.
The created RT system and other corresponding
CORBA servers can be seen in Fig. 9.

After the setup of this distributed simulation
system, the simulation result can be seen in Fig. 5. And
the action of the picking task for the real robot could be
seen in Fig. 10. The procedure of controlling the real
robot is almost the same as the simulation.

CONCLUSION

Using RT-Middleware technology, the

development of robotic systems could be divided into
two parts, namely, component development and system
integration. These two parts can be carried out
independently, thus achieving a scientific division of
labor: the component developer can concentrate on
implementing the main logic and the integrator can
concentrate on the design of the whole system without
thinking about the detail of the implementations. We

Res. J. Appl. Sci. Eng. Technol., 6(20): 3852-3858, 2013

3858

develop robotic functional elements as RT Components
for the guide robot, which make it easier to create the
distributed robot simulation system by re-using existing
modules and lower the cost of development of new
robot application.

From the application of the distributed simulation

system, we could also see that developing the software

modules into RT Components and using RTM to

integrate them into a robot system can achieve the

reusability and interoperability of the modular
components and make the robot system be network

distributed easily. In the meanwhile, the distributed

simulation system could be transferred and applied to

the real robot system easily and quickly. So it can

greatly improve development efficiency and adapt to

rapid changes in demand.

ACKNOWLEDGMENT

This study was supported in part by the National

High Technology Research and Development Program

of China under grant 2007AA041602 and

2011AA040801; the authors gratefully acknowledge

the support from YASKAWA Electric Cooperation for

supporting the collaborative research funds and address

our thanks to Mr. Ikuo Nagamatsu and Mr. Masaru

Adachi at YASKAWA for their cooperation.

REFERENCES

Aleksy, M., A. Korthaus and M. Schader, 2005.

Implementing Distributed Systems with Java and

CORBA. Springer, Germany.

Ando, N., T. Suehiro, K. Kitagaki, T. Kotoku and W.K.
Yoon, 2005. RT-middleware: Distributed

component middleware for RT (robot technology).

Proceeding of the International Conference on

Intelligent Robots and Systems (IROS 2005),

Edmonton, Alberta, Canada, pp: 3933-3938.

Ando, N., T. Suehiro, K. Kitagaki and T. Kotoku, 2006.

RT (Robot Technology)-component and its

standardization-towards component based

networked robot systems development. Proceeding

of the SICE-ICASE International Joint Conference,

Bexco, Busan, Korea, pp: 2633-2638.

Ando, N., S. Takashi and K. Tetsuo, 2008. A software

platform for component based rt-system

development: Openrtm-aist. Proceedings of the

International Conference on Simulation, Modeling

and Programming for Autonomous Robots

(SIMPAR 2008), Venice, Italy, pp: 87-98.

Chen, P.H., Q.X. Cao, C. Lo, Z. Zhang and Y. Yang,

2009. Robot Virtual Assembly Based on Collision

Detection in Java3D. Artif. Intell. Comput. Intell.,

5855: 270-277.

Kanehiro, F., H. Hirukawa and S. Kajita, 2004. Open

HRP: Open architecture humanoid robotics

platform. Int. J. Robot. Res., 23(2): 155-165.

Kim, J.H., 2005. Ubiquitous robot computational

intelligence: Theory and applications. Proceeding

of the Keynote Speech Paper of the 8th Fuzzy Days

International Conference, pp: 451-459.

Kim, J.H., K. Yong-Duk and L. Kang-Hee, 2004. The

third generation of robotics: Ubiquitous robot.

Proceeding of the 2nd International Conference on

Autonomous Robots and Agents, Palmerston

North, New Zealand, pp: 2.

Mohamed, N., J. Al-Jaroodi and I. Jawhar, 2008.

Middleware for robotics: A survey. Proceeding of

The IEEE International Conference on Robotics,

Automation and Mechatronics (RAM 2008),

ChengDu, China, pp: 736-742.

Qiu, C., Q. Cao, N. Ikuo and Y. Kazuhiko, 2005.

Graphical programming and 3-D simulation

environment for robot. Robot, 27(5): 436-440.

Quintas, J.M., P.J. Menezes and J.M. Dias, 2011. Cloud

Robotics: Towards Context Aware Robotic

Networks. Proc. Robot, pp: 420-427. Retrieved

from: www.meta-guide. com/ home/ bibliography

/google.../cloud-robotics.

Zhang, Z., Q. Cao, L. Zhang and C. Lo, 2009a. A

CORBA-based cooperative mobile robot system.

Ind. Robot, 36 (1): 36-44.

Zhang, Z., Q. Cao, C. Lo and L. Zhang, 2009b. A

CORBA-based simulation and control framework

for mobile robots. Robotica, 27(3): 459-468.

	ROBOT TECHNOLOGY MIDDLEWARE
	SYSTEM ARCHITECTURE
	APPLICATION OF THE DISTRIBUTED SIMULATION SYSTEM
	CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

