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Multiple Time-Varying Delays Analysis and Coordinated Control  

for Power System Wide Area Measurement 
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Road 800, Shanghai 200240, China 
 

Abstract: The stability of wide-area power system with multiple time-varying delays is investigated in this study. It 

is known for all that power system is a delay system for wide area measurement information of power system. 

Therefore, transmission time delay can not be ignored and it has great impact on the controller design. The steady 

stability analysis model of power system with multiple time-varying delays is constructed. The criterion of stability 

is formulated as feasibility problems of linear matrix inequality. According to the characteristics of the time-varying 

delays, the feedback controller is separated into two parts: The first level of control is derived from local signals 

without time delay and the second level of control is supplied from other generators with different time-varying 

delays. Taking a four-machine power system as example, the performance of the proposed controller is validated by 

the results of simulation in time-domain and it is proved that the proposed method is effective. 
 
Keywords: Feedback controller, multiple time-varying delays, power system, Wide-Area Measurement System 

(WAMS) 

 
INTRODUCTION 

 
Wide-Area Measurement System (WAMS) 

technology is widely applied to monitor and control the 
large interconnected power systems to improve the 
stability of systems. WAMS has the technology of 
Phase Measurement Unit (PMU), it was used to analyze 
power system performance such as damping inter-area 
oscillation (Hauer et al., 2007, Far et al., 2009) between 
different control areas, load  shedding (Seethalekshmi 
et al., 2009) and state estimation (Hong and Weiguo, 
2009). PMUs are units that measure dynamic data of 
power systems, such as voltage, current, angle and 
frequency (speed). The technology using accurate 
PMUs becomes a powerful source of wide-area 
dynamic information. It is found that dynamic 
performance of system can be enhanced if remote 
signals from one or more distant locations of the power 
system applied to local  controller  design  (Aboul-Ela 
et al., 1996). With the development of WAMS, it is 
possible to take the global signals as the feedback for 
wide-area stability control in large power systems, 
which breaks through the limit that the traditional 
damping controllers could only adopt local information 
as the feedback signals (Abido et al., 2001). Those 
signals are derived from synchronized measurements 
provided by PMUs installed at system (typically 
generator) buses. The signals from a wide-area 
controller are synchronized by using the Global 

Positioning System (GPS) technology. It is found that 
the dynamic performance of system can be increased 
with respect to inter-area oscillations if measured 
signals from remote locations are applied to the 
controller (Hui et al., 2002). In this trend, the impact of 
time delays introduced by remote signal transmission 
and processing in WAMS has not been ignored 
(Hongxia et al., 2004).  

Time delays are often the sources of poor 

performance and instability of wide-area power 

systems. Recently, improved performances have been 

reported by using Lyapunov-Krasovskii theorems and 

Linear Matrix Inequality (LMI) techniques (Wu et al., 

2004, He et al., 2006). One of the difficulties in 

applying Lyapunov methods is the lack of efficient 

algorithms for constructing the Lyapunov functional. In 

general, the use of reduced functional may result in 

conservatism. For instances, a condition of improved 

asymptotic stability for constant time delay systems is 

provided in Shengyuan and Lam (2007) and it avoids 

bounding certain cross terms which often leads to 

conservatism.  

In addition, two-level structure controller was 
firstly proposed in Yang and Bose (2008), in which a 
local signal is used to damp local mode and a wide-area 
signal feedback to damp inter-area modes. During the 
design of these controllers mentioned above, some of 
them did not consider the effect of time delays and the 
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most of them use robust control methods to handle the 
time delay as part of system uncertainties.  

At present, on the field of wide-area damping 
control, the researches focus on linear and constant 
time-delay (Yao et al., 2011). Based on the Lyapunov 
approach, the criteria of time-delay stability could 
guarantee the system to be asymptotic stability within 
limits, but it is at the expense of the control 
performance of damping controllers on a certain extent 
(He et al., 2009).  

From this perspective, in this study, a steady 
stability analysis model of power system with multiple 
time delays is constructed which uses the state variable 
of the local generator as the first level of control input 
signal and uses the signal difference between regions 
with different time delays as the second level control 
input signal to deal with the poorly damped inter-area 
modes. The closed-loop system with two levels of 
damping controller is modeled as a linear system with 
time delays. Then the maximal delays and parameters 
of the damping controller which allow the closed-loop 
power system to retain stable, are calculated to use the 
multiple time-varying delays stability criterion based on 
the Lyapunov theorems and using the LMI technique. 

 
Model of multiple time delays power system: Studies 
in this study are based on multiple machine power 
system. The system model can be described as follows: 

  

0
( 1)i
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dt

δ
ω ω= −                            (1a) 

 
1

[ ( 1)]i

mi ei i i

Ji

d
P P D

dt T

ω
ω= − − −                   (1b) 

 

1
[ ( ) ]

qi

qi di di di fdi

doi

dE
E x x I E

dt T

′
′ ′= − − − +

′
               (1c) 

 

1
( )

fdi

fdi Ai ti Ai si

ai

dE
E K U K V

dt T

′
′= − − +                          (1d) 

 
where, i = 1, L, n, n stands for the number of the 
generators: 
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Defining xi = (∆δi, ∆ωi, ∆���′ , ����)T
 and it is at the 

neighborhood of equilibrium point xi0 = (∆δi0, ∆ωi0, 

∆����′ , �����)
T
. The multiple machine dynamic Eq. (1) is 

linearized at xi0.  
We have the differential equation of whole the 

multiple machine power system as follow:  

	
  �
� = �	�
� + ���
�              (3) 
 

where, X(t) = (∆δ
T
, ∆ω

T
, 

∆��′� , ∆���′� )
T���� , �����×��, �����×�, ����, p is the 

number of the feedback controller adding at the 
generator (p≤n).  

Generally, the application of wide-area signals is 
mainly to damp the local mode in area for the design of 
the coordinated control in which the controller is 
located using the generator rotor speed as an input 
signal and the delay time τij(t) is very small when i = j, 
thus the local time delay can be defined as τii(t) = 0. On 
the other hand, The signal τij(t) is an additional global 
signal for damping inter-area modes when i ≠ j. It can 
be assumed that the time delay can be taken as τij(t), 0≤ 
τij(t)≤dij, i, …, p; j = 1, …, n, i = 1, …, p; if the 
transmission delay and processing delay are considered, 
then the feedback law can be given as the following 
representation:  

 

1 1 1,

( ) ( ) ( ( ))
p p n

ii ij ij

i i j j i

U t K X t K X t tτ
= = = ≠

= + −∑ ∑ ∑ , i = 1, …, p, j = 

1, …, n.                         (4) 
 

To identify the local and inter-area modes of n  

generators in system, Kii is local controller without time 
delay, Kij is local controller with multiple time-varying 
delays, then system (3) can be rewritten as follows:  

 

1 1,

( ) ( ) ( ( ))
p n

ij ij

i j j i

t t K t tτ
= = ≠

′= + −∑ ∑&X A X B X               (5) 

 

where, �′ =  �� + ∑ ���
�
���  , 0≤τij(t)≤dij; !"
�#�
�! ≤

%�# ≤ 1; ( = 1, … , *, + = 1.  
 

The stability criteria for multiple time-varying 

delays systems: The purpose of this study is to 

formulate practically computable criterions to check the 

stability of the power system (5) with multiple delays in 

different cases. The following theorem can be used to 

prove asymptotic stability of the system above.  

 

Theorem 1: The multiple time-varying delays system 

(5) is asymptotically stable if there exist symmetric 

positive definite matrix - ∈ ��, positive semi-definite 

matrices Sij and ��# ∈ ��, matrices Yij and Tij of any 

number of dimensions, i = 1, …, p; j = 1, …, n; and 

positive semi-definite matrix X satisfy: 
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such that the following LMI holds:  
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Proof: Choose the Lyapunov-Krasovskii functional for 
the system (5) with time-varying delays as follows:  
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According to following Newton-Leibniz formula:  
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�A�6A − 2�
 − "�#�
��BC =

0, the detailed proof of the LMI above can be shown in 
Wu et al. (2004).  

Since P>0 (∃> G0: - ≥ GJ), Rij and Sij≥0, i = 1,…, 
p; j = 1, …, n, the first Lyapunov-Krasovskii condition 
holds:  

 
2

( ) ( ) ( ) ( )T

o tx x t Px t x tε≥ ≥V                            (12) 

 
Then, there exists a positive ε' such that the 

derivative of functional K
L�2;� ≤ −G′‖2�
�‖N along the 
trajectories of the system.  

Consider the derivative of V0(xt) along the 
trajectories of (5), one has: 
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By applying the  standard Schur’s formula (Boyd 

et al., 1994), the matrix Ξ  can be denoted as (7). 

Therefore, the system (5) is asymptotically stable when 

the inequalities (7) and (8) hold. This completes the 

proof. 

 

Feedback controller design: The Theorem 1 as the 

criterion standard of the system (5) with multiple time-

varying delays and the Eq. (7) can be described as: 
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The matrices ∑ ���
�
���  and ∑ ∑ ��#�#��,#5�

�
���  are the 

two unknown matrix variables in the above formula and 

they are nonlinear form of this matrix inequalities, 

therefore, they can be replaced by an appropriate 

variable in order to translate nonlinear matrix 

inequalities into a new variable equivalent LMIs and to 

get the value of the new variables by solving LMI.  

The left matrix of the inequality (19) is left 

multiplication and right multiplication the martrix 
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, 
respectively. The time delays dij are given firstly and 

the range of the time delays is 20ms≤ dij 
≤350ms. Then 

the inequality (19) can be transformed into the 

inequality as follows:  
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  

= − − − − +  
 

  

∑∑
L

M M

L

W

;  

{ }23

1 1,
( 1)

(0 0 0)

k

pn p
p n

T T

ij ij

i j j i
i n j a

N B U I

−

= = ≠ − + −

=∑ ∑
644474448

L L
14243

W ;  

1

33

1 1

p n

ij ij

i j

d R−

= =

= −∑∑W ;  

where, { } {1
1,1, 1, 2, 2, 2, 3,3, 3, 4, 4

pn p

pn p

k k

nn n n

a

−

−

=
=
644444474444448

L L L LL
123 1424314243

, 

we can obtain matrix M  and N  after the LMI (20) is 

solved and ∑ ���
�
��� = _- , ∑ ∑ ��#�#��,#5�

�
��� =

 ∑ ∑ �̀#�#��,#5�
�
��� -.  

 

Simulation: The two-area four-machine power system 

shown in Fig. 1 was considered for this study, the 

detailed description of the study system including 

network data and dynamic data for the generators can 

be found in Kundur (1994) and Table 2. It has been 

widely used for the study of the low frequency 

oscillation  in  power system. Each generator of the test  
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Fig. 1: The two-area four=machine power system 

 

 
 

Fig. 2: Wide-area control configuration 

 
Table 1: Eigen value analysis of 4-generator without controller 

Mode Eigen values D.R. Freq.(Hz) 

Main 

generator 

1 -0.6772+7.0470i 0.0957 1.1216 #1 
2 -0.6663+7.2708i 0.0913 1.1572 #3 

3 0.1082+4.0272i -0.0269 0.6409 #1, #3 

 
Table 2: System generator data 

xd (pu) 0.2 T'd0 (s)
 

8.0 Ta (s) 0.05 

xq (pu) 0.189 T'q0(s) 0.4 Tb (s) 1.0 

x'd (pu) 0.0333 TJ (s) 117(G1,2) 
111.15(G3,4) 

Tc (s) 1.0 

x'q (pu) 0.0333 KA (s) 50 D (s) 0 

 

system is represented by a 4th-order differential 

equation and equipped with excitation system and no 

governor. All four generators are equipped with IEEE 

AC type excitation system. The open loop system has 

an inter area oscillation mode with negative damping 

ratio as shown in Table 1 and generator 2 and generator 

3 are the main generators of this mode. It is found that a 

local controller installed at generator 2 is more effective 

in damping inter-area oscillations than other locations 

(Kussner et al., 2001). Three different delay times are 

considered in the test system and dij>0(i ≠ j).  

The structure of the feedback controller is shown in 

Fig. 2. The Vt and Vref denote the generator terminal 

voltage and its reference, respectively. The local mode 

is damped by local controller which uses the rotor 

speed of local generator as input and its parameters are 

determined based on the phase compensation of local 

mode frequency. The output of the wide-area controller, 

local
V∆  is added to the excitation system of the selected 

machine together with the output of local controller, 

∆Vwide-area is provide to damping for the inter-area 

modes. The conventional wide-area controller uses a 

wide-area signal as feedback input and provides an 

additional control signal to the selected machine for the 

damping of the inter-area modes. 

Local controller: The states of test system can be 

written as: 

  

( )(1~ ) , , ,
T

n q fdx E Eδ ω ′= ∆ ∆ ∆ ∆ ,  

 

where,  n is the number of generators. Local controller 

is a conventional controller without time-delay. The 

local controller Vlocal is described as follows:  

 

1

( ( ))
p

local ii local ii

i

V K X t tτ
=

= − −∑   

 

where, ∑ ���
�
���  is the constant gain of the controller. 

The pole placement design method is applied to design 

local controller. After adding the local controller, all 

eigenvalues of the state matrix A are λk 
(k = 1, …, n) 

and Re(λk)>0 (k = 1, …, n) hold.  

 

Wide-area controller: There are three groups of 

remote signal with different time delays (µij = 0) as 

follows:  

 

Group I: 
12 30d ms= , 

32 70d ms= , 
42 50d ms= .  

=100*[0.474941  -0.000433  -0.001323 -2.28782IK ; 

0 0 0 0; -0.533433  -0.0000542   0.000564   0.4610376;  

-0.443698   0.000133  0.001444   2.305355] . 

 

Group II: 
12 160d ms= , 

32 220d ms= , 
42

200d ms= .  

=1000*[0.063405  -0.000160  -0.000649  -1.165591;IIK

0 0 0 0; -0.002015  -0.000009   0.000052   0.0461442;  

-0.015482   0.000012   0.000165   0.293769] . 

 

Group III: 
12

200d ms= , 
32 350d ms= , 

42 250d ms= .  

=1000*[-0.266117   0.000073   0.000237   0.371280;IIIK

0 0 0 0; 0.110353  -0.000092  -0.001078  -1.704954;  

0.183432  -0.000068  -0.000477  -0.341896] .  

 

The system response without wide-area controllers 

is shown in Fig. 3. By comparing the response with 

time delay, it is estimated that the system with a local 

controller can tolerate time delay up to 70 ms in Fig. 3, 

the system is towards unstable as the time-delay 

exceeds 100 ms.  

With different time delays, there are three different 

wide-area controllers are designed by the method 

mentioned in this study. The parameters of wide-area 

controller   shown    as    KI,  KII    
and   KIII  above, the 

simulation curves of the system with wide-area 

controller response are shown in Fig. 4.  

The step response of speed deviation of generator 3 

with time-delay group 1 is shown in Fig. 5. The step in 

this case is the response due to a step change in Vref 
of 

generator 3.  
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Fig. 3: Simulation curves without wide-area controller 

 

 
 

Fig. 4: Comparison of the performance of the system with 

wide-area feedback controller 

 

 
 
Fig. 5: Comparison of the performance of local controller and 

adding wide-area controller KI. 

 

 
 

Fig. 6: Closed-loop system fault response with time-delay 

group I 

When a three-phase fault occurs at bus 7, the 

deviation step response of rotor angle δ14 with time-

delay group I is shown in Fig. 6. If the time-delay is 

considered, the closed-loop system can keep stable.  

 

CONCLUSION 

 

The wide-area signals with time delay will weak 

the system performance or even cause instability. To 

achieve maximum available transfer capability, such a 

time delay should be taken into account to design the 

centralized control for large power system. The analysis 

of the impact of time delay to wide-area power system 

control is addressed in this study by two levels of 

controller design. The first local control is derived from 

local signals without time delay and the second level 

control is supplied from a coordinator using global 

states with different time-varying delays. A criterion 

based on the Lyapunov-Krasovskii functional theorem 

is derived to design appropriate controller. This aim of 

design is to alleviate the vulnerability of interconnected 

power system. It is observed that the time-domain 

performances of the system are improved with the 

different time delays signals.  

 

NOMENCLATURE 

 

δi  = The  state  variables  are  the  rotor  angle  of  

  generator (in radian) 

ωi  =  The rotor speed (in rad/s) 

TJi  =  The mechanical starting time (in s) 

T'doi  =  The  d -axis   transient   short   circuit   time  

  constant of generator (in s) 

Pmi  =  The mechanical active power 

Pei  =  The electrical active power 

Di  =  The damping coefficient 

E'qi  =  The q -axis transient voltage 

Efdi  =  The excitation voltage; 

xdi, xqi  = xdi   is   d-axis   synchronous   reactance   of  

  generator 

  xqi   
 
is    q-axis  synchronous   reactance   of  

  generator 

x'di  =  x'di is d-axis transient reactance of generator 

id, iq  =  id 
 is d -axis circuit of generator; iq

 
is q -

axis  

  circuit of generato 

vd, vq  =  vd is d -axis voltage of generator 

  vq is q -axis voltage of generator 

KAi  =  The compensation network gain 

Tai  =  lead time constant (in s) 

Vsi  =  The output signals of the feedback controller 

Gij, Bij  =  The conductance between node i and j  

  The susceptance between node i and j 

Τij(t)  =  Time-delays between node i and j 

Dij  =  The  maximal  time-delays  between  node  i  

  and j 

0 5 10 15 20 25 30
-12

-10

-8

-6

-4

-2

0

2

4

6

8

Time(sec)

∆
δ 1
4
 (
d
e
g
re
e
s
)

 

 

Group I

Group II

Group III

Group II

Group III

Group I



 

 

Res. J. App. Sci. Eng. Technol., 6(19): 3540-3546, 2013 

 

3546 

ACKNOWLEDMENT 

 

The authors would like to thank the anonymous 

reviewers for helpful suggestions to improve this 

manuscript. This study was supported by National 

Natural Science Foundation of China (No.61074042). 

 

REFERENCES 

 

Abido, M.A., 2001. Parameter optimization of multi-

machine power system stabilizers using genetic 

local search. Electrical Power Energy Syst., 23(8): 

785-794. 

Aboul-Ela, M.E., A.A. Sallam, J.D. McCalley and A.A. 

Fouad, 1996. Damping controller design for power 

system oscillations using global signals. IEEE T. 

Power Syst., 11(2): 767-773.  

Boyd, S., L. EI Ghaoui, E. Feron and V. Balakrishnan, 

1994. Linear Matrix Inequality in Systems and 

Control Theory. Philadelphia, PA: SIAM. 

Far, H.G., H. Banakar, L. Pei, L Changling and B.T. 

Ooi, 2009. Damping inter area oscillations by 

multiple modal selectivity method. IEEE T. Power 

Syst., 24(2): 766-775.  

Hauer, A.J.F., D.J. Trudnowski and J.G. DeSteese, 

2007. A perspective on wams analysis tools for 

tracking of oscillatory dynamics. IEEE Power 

Engineering Society General Meeting, pp: 1-10. 

He, Y., M. Wu and J.H. She, 2006. Delay-dependent 

stability criteria for linear systems with multiple 

time delays. IEE Proceedings - Control Theory and 

Applications, 153: 447-452. 

He, J., C. Lu, X. Wu, P. Li and J. Wu, 2009. Design and 

experiment of wide area HVDC supplementary 

damping controller considering time delay in CSG. 

lET Generation Transm. Distri., 3(1): l7-25. 

Hong, L. and L. Weiguo, 2009. A new method of 

power system state estimation based on wide-area 

measurement system. 4th IEEE Conference on 

Industrial Electronics and Applications, ICIEA, pp: 

2065-2069. 

Hongxia, W., K.S. Tsakalis and G.T. Heydt, 2004. 

Evaluation of time delay effects to wide-area 

power system stabilizer design. IEEE Trans. Power 

Syst., 19: 1935-1941. 

Hui, N., G.T. Heydt and L. Mili, 2002. Power system 

stability agents using robust wide area control. 

IEEE T. Power Syst., 17: 1123-1131. 

Kundur, P., 1994. Power System Stability and Control. 

McGraw Hill, New York, pp: 813-816.  

Kussner, K., I. Erlich and H.H. Wilfert, 2001. Design of 

inter-area oscillation damping controllers using 

global measurements. IEEE Porto Power Tech 

Proceedings, 2: 6. 

Seethalekshmi, K., S.N. Singh and S.C. Srivastava, 

2009. WAMS assisted frequency and voltage 

stability based adaptive load shedding scheme. 

Power & Energy Society General Meeting, PES 

'09, IEEE, pp: 1-8.  

Shengyuan, X. and J. Lam, 2007. On equivalence and 

efficiency of certain stability criteria for time-delay 

systems. IEEE T. Automatic Control, 52: 95-101. 

Wu, M., Y. He, J.H. She and G.P. Liu, 2004. Delay-

dependent criteria for robust stability of time-

varying delay systems. Automatica, 40(8): 1435-

1439. 

Yang, Z. and A. Bose, 2008. Design of wide-area 

damping controllers for interarea oscillations. IEEE 

T. Power Syst., 23(3): 1136-1143. 

Yao, W., L. Jiang, Q.H. Wu, J.Y. Wen and S.J. Cheng, 

2011. Delay-dependent stability analysis of the 

power system with a wide-area damping controller 

embedded. IEEE T. Power Syst., 26(1): 233-240.  

 


