
Research Journal of Applied Sciences, Engineering and Technology 6(22): 4281-4288, 2013

DOI:10.19026/rjaset.6.3545

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2013 Maxwell Scientific Publication Corp.

Submitted: March 11, 2013 Accepted: April 12, 2013 Published: December 05, 2013

Corresponding Author: Saratha Sathasivam, School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM Penang,

Malaysia
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

4281

Research Article

Developing Agent Based Modeling for Reverse Analysis Method

Saratha Sathasivam, Ng Pei Fen and Nawaf Hamadneh
School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM Penang, Malaysia

Abstract: In this study we want to develop Agent Based Modelling (ABM) for Reverse analysis method. Logical

knowledge resides in the synaptic connections of a network. By examining the connection strengths obtained during

the learning process, logical rules that have been acquired may be deduced. Following this, we introduce a method

to do this, which we call reverse analysis: given the values of the connections of a network, we hope to know what

logical rules are entrenched in it. In this study, agent based modelling for this method will be developed by using

NETLOGO as the platform. By using ABM the capability of Reverse Analysis method in the data mining

application can be enhanced.

Keywords: Agent based modelling, logical rules, NETLOGO, reverse analysis

INTRODUCTION

Neural network which is inspired by biological

neural networks, is assumed that intelligence emerges
from interactions among a huge amount of neurons. It
approach has giving an alternative knowledge discovery
applications and computing to user (Michalski et al.,
1998). It can solve sophisticated recognition and
analysis problems. It obtains the ability to generalize
the knowledge to similar pattern from the previous
situation and results which often surmounts the human
experts.

Neural networks are becoming very popular with
data mining practitioners, particularly in medical
research, finance and marketing fields. This is because
they have proven through comparison, their predictive
power with statistical techniques using real data sets
such as clustering technique, K-means algorithm and
others (Hamadneh et al., 2012). There is a lot of
research in data mining based on neuro-symbolic
integration (Blair et al., 1999; Hölldobler and Kalinke,
1994; Tsakonas, 2004). Most approaches have been
based on the feed-forward network architecture in
which the back-propagation algorithm is generally
available for any functional induction, whereas
Sathasivam have present a method using the recurrent
Little-Hopfield network known as Reverse Analysis
Method (Sathasivam, 2007). By examining the
connection strengths obtained after learning process,
logical rules that have been acquired may be deduced
which we call Reverse Analysis: given the values of the
connections of a network, we hope to know what
logical rules are entrenched in it.

The aim of this study developed Agent Based
Modelling (ABM) for doing Reverse Analysis method.
Agent-based modelling is a powerful simulation
modelling technique that has seen a number of
applications in the last few years, including applications
to real-world business problems. ABM is computer
representation of systems that are comprised of
multiple, interacting agents. We want to develop a user
friendly approach to handle the task of Reverse
Analysis. We limit our model to Horn clauses due to
non-Horn clauses involve more computational
complexity and triggered satisfiability problem.

LOGIC PROGRAMMING ON A
HOPFIELD NETWORK

Many optimization problems, including those

associated with intelligent behaviour, can be readily

represented on Hopfield network by transforming the

problem into variables such that the desired

configuration corresponds to the minimization of the

respective Lyapunov function. Indeed, the energy

function can be thought of as a programming language

for transforming optimization problems into a solution

method applying network dynamics.

In order to keep this study self-contained we

briefly review the optimization mechanism of the

Hopfield model (Hopfield, 1982) and how logic

programming can be carried out on such a network

through this mechanism. The system consists of N

formal neurons, each of which is described by an Using

variable. (),(1,2,....)S t i N
i

=

Neurons then are bipolar,

Res. J. Appl. Sci. Eng. Technol., 6(22): 4281-4288, 2013

4282

{ 1,1}iS ∈ − , obeying the dynamics sgn()S h
i i
→ ,

where, the field,

(2) (1)
h J S J
i ij j i

j

= +∑ , i and j running

over all neurons N, J
(2)

ij

is the synaptic strength from

neuron j to neuron i and -Ji is a fixed bias (negative of

the threshold) applied externally to neuron i and -Ji.

Hence, the neuron modifies its state Si; according to

Mc-Culloch Updating Rule.

Restricting the connections to be symmetric and

zero-diagonal, Jij
(2)

 = Jji
 (2)

 , Jii
(2)

 = 0, allows one to write

a Lyapunov or energy function:

 (1)

Which this decreases monotonically with the

dynamics. The dynamics thus allows the handling of

combinatorial optimization problems, where neurons

are mapped onto the combinatorial variables and the

energy function is equated to the cost function of the

optimization problem.

The two-connection model can be generalized to

include higher order connections. This modifies the

“field” into:

 (2)

where, “…..” denotes still higher orders and an energy

function can be written as follows:

 (3)

provided that J
(3)

ijk = J
(3)

[ijk] for i, j, k distinct, with […]

denoting permutations in cyclic order and J
(3)

ijk = 0

 for

any i, j, k equal and that similar symmetry requirements

are satisfied for higher order connections. The updating

rule maintains:

 (4)

In logic programming, a set of Horn clauses which

are logic clauses of the form where the

arrow may be read “if” and the commas “and”, is given

and the aim is to find the set (s) of interpretation (i.e.,

truth values for the atoms in the clauses which satisfy

the clauses (which yields all the clauses true). In other

words, the task is to find ‘models’ corresponding to the

Table 1: Synaptic strengths for A←B, C using Wan Abdullah’s

method

Synaptic strengths Clause/A←B,C

)3(

][ABCJ
 1/16

)2(

][ABJ 1/8

)2(

][ACJ
 1/8

)2(

][BCJ
-1/8

)1(

][AJ
 1/8

)1(

][BJ
-1/8

)1(

][CJ
-1/8

given logic program (Sathasivam and Wan Abdullah,

2011).

In principle logic programming can be seen as a

problem in combinatorial optimization, which may

therefore be carried out on a Hopfield neural network.

This is done by using the neurons to store the truth

values of the atoms and writing a cost function which is

minimized when all the clauses are satisfied. For logic

programming, we chose an energy function

representing the number of unsatisfied clauses, given a

set of logical interpretations (i.e., neural state

assignments) (Hopfield, 1982), or the sum of

“inconsistencies”, where the inconsistency of a

particular clause is given as the Boolean value of the

negation of that clause.

As an example, consider the clause, k1 = A ← B, C,

which translates as k1 = A ¬ (B C) = A ¬B

¬C. The “inconsistency” of this clause is then:

E1 = ½ (1-SA) ½ (1+SB) ½ (1+SC) (5)

where, SA = 1 if A is true and -1 otherwise, etc. It can be

verified that E1 is 0 only when k1 is satisfied and 1

otherwise. By comparing with (3), the contribution of to

the energy function is given in Table 1, noting that at

least a third-order network is required. Another clause,

k2 = D ← B, say, would contribute:

E2 = ½ (1-SD) ½ (1+SB) (6)

to the energy:

 (7)

for the program P = i ki and +¼ to J
(2)

[B,D] and-¼ and

+¼, respectively to J
(1)

B and J
(2)

D. EP then is

proportional to the number of unsatisfied clauses and is

minimized at 0 when all clauses are satisfied. This

method of doing logic programming in neural network

is addressed as Wan Abdullah’s method. Note that, the

1 (2) (1)

2
E J S S J S

ij i j i i
i j i

= − −∑ ∑ ∑

(3) (2) (1)
.. ..h J S S J S J

i i jk j k i j j i
j k j

= + + +∑ ∑ ∑

1 (3)
.

3
E J S S S

i j k i j k
i j k

= − −∑ ∑ ∑

1 (2) (1)

2
J S S J S

i j i j i i
i j i

−∑ ∑ ∑

(1) sgn[()]S t h t
i i

+ =

1 2, ,.., NA B B B←

∨ ∧ ∨ ∨

P i

i

E E=∑

U

Res. J. Appl. Sci. Eng. Technol., 6(22): 4281-4288, 2013

4283

energy function is additive in the sense that new clauses

can easily be added to the knowledge base just by

adding respective synaptic values without having to

undergo recalculation.

In theory the definition of the energy as chosen

guarantees that the minimal energy states are those with

least logical inconsistency, irrespective of how clauses

are related. Some studies on issues like this and others

have been carried out and indicate that CNF clauses are

better suited than the usual Horn clauses used in

conventional logic programming (Browne and Sun,

2001; Garcez et al., 2002).

HEBBIAN LEARNING OF LOGICAL

CLAUSES

The Hebbian learning for a two-neuron synaptic

connection can be written as:

 (8)

(or, for bipolar neurons,), where λ is a

learning rate. For connections of other orders, we can

generalize this to:

 (9)

This gives the changes in synaptic strengths

depending on the activities of the neurons. In an

environment where selective events occur, Hebbian

learning will reflect the occurrences of the events. So, if

the frequency of the events is defined by some

underlying logical rule, the respective logic should be

entrenched in the synaptic weights.

Wan Abdullah has shown that the logic acquired
through Hebbian learning as such is equivalent to that
in the synaptic strengths obtained using Wan
Abdullah’s method provided that Eq. (10) is true:

 (10)

This has also been verified through computer

simulation studies (Sathasivam and Wan Abdullah,

2011). This implies that from the synaptic strengths

obtained via Hebbian learning in an environment

dictated by some underlying logical rules, these logical

rules can be obtained if we can come up with a way of

reversing Wan Abdullah’s method.

REVERSE ANALYSIS METHOD FOR 3-CNF

We now adopt CNF clauses instead of Horn clauses.

We can generalize Wan Abdullah's method in Section

2 to 3-CNF formulae. The following Table 2 shows

logical clauses in 3-CNF form and the corresponding

connection strengths.

Let us now see how we can obtain clauses from

synaptic strengths. Since three-atom clauses will give

highest the third order connections, firstly three-atom

clauses are captured by inspecting positive values of

third order connection strengths. For example, if

is positive nonzero, there is a possibility for the possible

clauses:

(A B C), or (A C B), or (B C

A), or (A B C)

If <0 and >0 and >0, then the clause

A B C is derived. If any decision cannot be

done by using second order connection strength

information, then we will look at the first order

connection strengths. If J
(1)

A, J
(1)

B and J
(1)

C show

positive values of connection strengths, then the clause

A B C is induced. After obtaining the clauses, the

contributions of this clause to various connection

strengths (third order connection strengths, second

order connection strengths and first order connection

strengths) are subtracted from the total connection

strengths contributed by the data set. Then the process

can be carried out with other three-atom clauses until

all the remaining positive values of third order

connection strengths is within a tolerance value,

determined by the user, to minimize spuriously learnt

clauses. The similar steps then carried out for the

extraction of two-atom then one-atom clauses.

Next, we capture three-atom clauses by inspecting

negative values of third order connection strengths. The

corresponding second order connection strengths are

inspected to determine which atom is the head of the

clause. For example, if value of J
(3)

[ABC] is negative

nonzero, there is a possibility for the possible clauses:

Table 2: Logical clauses connections strengths using Wan Abdullah’s method

3-CNF formula

Connection Strengths

����
(�)

 ���
(�)

 ���
(�)

 ���
(�)

 ��
()

 ��
()

 ��
()

ABC 1/16 1/8 1/8 -1/8 1/8 -1/8 -1/8

AB¬C -1/16 -1/8 1/8 1/8 1/8 1/8 -1/8

ABC -1/16 -1/8 -1/8 -1/8 -1/8 -1/8 -1/8

ABC 1/16 -1/8 -1/8 -1/8 1/8 1/8 1/8

(2) (2) (2 1)(2 1)ij i jJ V Vλ∆ = − −

jiij SSJ λ=∆

() ()

.... (2 1)(2 1)....(2 1)n n

ij m i j nJ V V Vλ∆ = − − −

)!1(

1)(

−
=

n

nλ

)3(

][ABCJ

∨ ∨ ¬ ∨ ∨ ¬ ∨
∨ ¬ ¬ ∨ ¬ ∨ ¬

)2(

][BCJ
)2(

][ACJ)2(

][ABJ

∨ ¬ ∨ ¬

∨ ∨

Res. J. Appl. Sci. Eng. Technol., 6(22): 4281-4288, 2013

4284

(A B C), or (A C v B), or (B C

A), or (A B C)

If >0 and >0 and <0, then the clause A

B C is derived. Similarly, if any decision could

not been made by using second order connection

strength information, then first order connection

strengths are considered. If , and J
(1)

iC show

negative values of connection strengths, then the clause

A B C is induced. After obtaining the

clauses, the contributions of this clause to various

connection strengths are subtracted from the connection

strengths. Then, the process is carried on with other

three-atom clauses until all the remaining negative

values of third order connection strengths is within a

tolerance value, determined by the user (e.g., 0.0001),

to minimize spuriously learnt clauses. We then carry

out the extraction of two-atom clauses then one- atom

clauses in similar way.

AGENT BASED MODELLING

After knowing the efficiency of Reverse Analysis

method, we will use NETLOGO as a platform to

develop Agent Based Modelling (ABM). We will

designed an agent based modelling to implement

Reverse Analysis. NETLOGO is a multi-agent

programming language and integrated modelling

environment. There has been continuous development

for connected learning and computer-based modelling.

Furthermore, it is a well suited method for modelling

complex systems that can give instructions to hundreds

or thousands of “agents” to operate independently like

turtle. It is because it is fully programmable and formed

by simple language structure. It can instruct mobile

agents move over a grid of stationary agents.

While for the link agents, they connect the mobile

agents to make networks, graphs and aggregates which

can let the users get more understanding on output of

system. Moreover, its runs are exactly reproducible

cross-platform. The model can be viewed in either 2D

or 3D form. Programmer can choose any interesting

agent shapes to design the agent based modelling and

some interface builders like buttons, sliders, switches,

choosers, monitors, notes, output area in the agent

based modelling can be developed too. Those interface

builders are ready to use and programmer do not need

to write more programming language from them. Later

in the next section will carry out the definition and

more explanation of simulator and benefits of agent

based modelling in NETLOGO.

MODEL OF NEURAL NETWORKS
SIMULATOR

Firstly, a simulator of Hopfield networks that using

a conventional computer had created instead of every

time build up a new network design or store a new set

of memories. It saves lots of energies and times for the

programmer to rebuild new system from time to time.

Thus, a computer program which emulates exactly what

the user want needs to construct in order to simulate the

action of Hopfield Network. It wills easy the

programmer to modify the program and store a new set

of data. Thus, an agent based modelling had designed

for the user to run the simulator.

Fig. 1: Layout of the ABM

∨ ∨ ¬ ∨ ¬ ∨ ∨
¬ ¬ ∨ ¬ ∨ ¬

)2(

][BCJ)2(

][ACJ
)2(

][ABJ

∨ ∨ ¬

)1(

AJ)1(

BJ

¬ ∨ ¬ ∨ ¬

Res. J. Appl. Sci. Eng. Technol., 6(22): 4281-4288, 2013

4285

Fig. 2: Flow chart of ABM

Moreover, Agent-Based Modelling (ABM) which

also called individual-based modelling is a new

computational modelling paradigm which is an

analyzing systems that representing the ‘agents’ that

involving and simulating of their interactions (Hopfield,

1982; Sathasivam and Wan Abdullah, 2011). Their

attributes and behaviours will be group together

through their interactions to become a scale.

Programmer can design ABM in NETLOGO by using

button, input, output, slides and other functions that

make ABM easy to understand and use. In addition,

ABM (Barry et al., 2009; Shamseldin and Adviser-

Bowling, 2009) reveals the appearance of the systems

from low to high level outcomes and it make

improvement by surpassing the traditional modelling

limitations such as allowing agent learning and

adaption, limited knowledge and access to information.

It is because, the agent based modelling paradigm are

commonly used in dynamics and complex communities

such as telecommunication, health care and others that

involving large populations which used explicitly

capture social networks.

In general, when we build an ABM to simulate a

certain phenomenon, we need to identify the actors first

(the agents). We then need to consider the processes

(rules) governing the interactions among the agents.

Figure 1 shows the layout of the ABM built and Fig. 2

shows the flow chart for the ABM.

Explanation for the flow chart:

Phase 1: Entering values:

• Press the start up/Reset Quick-Start button for the

new user.

• Key in NN, NC1, NC2 and NC3. All these values

are chosen by try and error technique.

• Later, choose type of learning which is either

Hebb’s rule or Wan Abdullah’s method.

• Next, slide the slider to choose Number of iteration

learning and switch on the labels of turtles.

• After all the value had been set, press the setup

button.

• Then, press run button to run the program. The

program will generate random program clauses.

Res. J. Appl. Sci. Eng. Technol., 6(22): 4281-4288, 2013

4286

Example, if user declared NC1 as 4, then 4 first

order clauses will be generated.

 Phase 2: Training:

• Initialize initial states for the neurons in the

clauses:

Next, based on the idea for the Hopfield network

that originated from the behaviour of neurons

(particles) in a magnetic field, every particles will

‘communicates’ to each other to a completely

linked forms with each of them are trying to reach

an energetically favourable state that means a

minimum of the energy function. This state is

known as activation. Thus, all neurons in this state

will rotate and thereby encourage each other to

continue the rotation. So, let the network evolves

until minimum energy is reached. The minimum

energy corresponds to the energy needed to reach

global minima values.

o Test the final state (state obtained after the neurons

relaxed). The system will determine the final state

as a stable state if the state remains unchanged for

more than five runs.

• The clauses are then extracted from the resulting

network by using reverse analysis algorithm and

then compared to original set of generated clauses

in the aspect of global minima ratio and hamming

distance.

• We will run for 200 trials and 100 combinations of

neurons.

• Lastly, the system will print out the output for each
run and click on the test button for report the result
of comparison generated clauses and clauses that
obtained.

Phase 3: 2D graphic show:

• After press the test button, click on the go button to

run the animation that show a group of turtles

based on the number of NN swimming in the river.

An internal link will create between them to show

the connections among themselves.

RESULTS AND DISCUSSION

We test the agent based modelling with computer

simulation. We generate a set of 4 random clauses and

subject 10 neurons network through Hebbian learning

from events satisfying the generated clauses. The

clauses are then extracted from the resulting network

using reverse analysis algorithm and then compared to
original set of generated clauses. We find that in 200

trials, we have 100% agreement. A sample trial is

shown below in Fig. 3 and 4 displaying this agreement.

In the output we can see how the turtles are linked

together. With this we can unearth the relationships

between the data sets. For example let us consider the

following example (Sathasivam and Abdullah, 2008):

Reverse analysis method has been tested in a small

data set as shown in Table 3. The logical rules induced

from the method seem to agree with the frequent

observations.

By using Reverse Analysis method approached we

was discussed previously, we obtained the following

rules:

Bread Peanut Butter, Cheese

Burger Fillet, Cheese

Fig. 3: Output for comparison generated clauses and clauses that obtained

←

←

Res. J. Appl. Sci. Eng. Technol., 6(22): 4281-4288, 2013

4287

Fig. 4: Testing result

Table 3: Customers daily purchased from a supermarket

Bread

Peanut
Butter Cheese Fillet Burger

Sara √
Mike √ √ √
John √ √
Lena √ √
Susan √ √ √

From the rules, we can interpret that a customer who

purchased peanut butter and cheese has a high

probability of purchasing bread also. Meanwhile, a
customer who purchased fillet and cheese has a high

probability of purchasing burger.

We developed agent based modelling for this case.

We can see how the turtles (bread, peanut butter, cheese

etc.,) are linked to each other graphically (Fig. 2).

The logical rules that were induced by using

Reverse Analysis method can help the departmental

store in monitoring their stock according to the

customers demand. Significant patterns or trends in the

data set have been identified by using reverse analysis.

The departmental store can apply the patterns to

improve its sales process according to customers

shopping trends. Furthermore, the knowledge obtained

may suggest new initiatives and provide information

that improves future decision making. By using ABM,

user can analyze the graphical design of the links more

efficiently and systematically.

CONCLUSION

In this study, we had developed agent based

modelling to carry out reverse analysis method by using

NETLOGO as platform. The benefits of ABM over

other modelling techniques can be captured in three

statements:

• ABM captures emergent phenomena: Able to

produce model for the set of logic programs

• ABM provides a natural description of a
system: Able to integrate/link Reverse Analysis

method

• ABM if flexible: We can change the training

parameters according to the user. So, ABM has

enhanced the output efficiency of the Reverse

Analysis method. The user can analyze the output

and interpret the linked between the clauses

extracted easily and robustly. This upgrades the

capability of Reverse Analysis method in the data

mining application.

ACKNOWLEDGMENT

This research is partly financed by Science Fund

grant (305/ PMATHS/613142) from the Ministry of

Higher Education, Malaysia and USM grant

(304/PMATHS/6312053).

REFERENCES

Barry, P.S., M.T. Koehler and B.F. Tivnan, 2009.

Agent-directed simulation for systems engineering.

Proceeding of the Spring Simulation

Multiconference.

Blair, H.A., F. Dushin, D.W. Jakel, A.J. Rivera and M.

Sezgin, 1999. Continuous Models of Computation

for Logic Programs: Importing Continuous

Mathematics Into Logic Programming's

Algorithmic Foundations. Retrieved from: http://

citeseerx. ist.psu. edu/ viewdoc/ summary? Doi =

10.1.1.15.9528.

Browne, A. and R. Sun, 2001. Connectionist inference

models. Neural Netw., 14(10): 1331-1355.

Garcez, A.S.A., K. Broda and D.M. Gabbay, 2002.

Neural-symbolic Learning Systems: Foundations

and Applications. Springer Verlag, London, pp:

271, ISBN: 1852335122.

Hamadneh, N., S. Sathasivam, S.L. Tilahun and O.H.

Choon, 2012. Learning logic programming in

radial basis function network via genetic algorithm.

J. Appl. Sci., 12(9): 840-847.

Hölldobler, S. and Y. Kalinke, 1994. Towards a new

massively parallel computational model for logic

programming. Proceeding of the ECAI94

Workshop on Combining Symbolic and

Connectionist Processing.

Hopfield, J.J., 1982. Neural networks and physical

systems with emergent collective computational

abilities. Proc. Nat. Acad. Sci., 79(8): 2554-2558.

Michalski, R.S., I. Bratko and A. Bratko, 1998.

Machine Learning and Data Mining: Methods and

Applications. John Wiley and Sons, Inc.,

Chichester, pp: 472.

Sathasivam, S., 2007. Logic Mining in Neural Network.

Ph.D. Thesis, Malaysia.

Sathasivam, S. and W.A.T.W. Abdullah, 2008. Logic

Learning in Hopfield Networks. arXiv preprint

arXiv:0804.4075.

Res. J. Appl. Sci. Eng. Technol., 6(22): 4281-4288, 2013

4288

Sathasivam, S. and W.A.T. Wan Abdullah, 2011. Logic

mining in neural network: Reverse analysis

method. Computing, 91(2): 119-133.

Shamseldin, R.A. and S.R. Adviser-Bowling, 2009.

Network optimization of dynamically complex

systems. Int. J. Exp. Design Process Optimisation,

1(1): 79-103.

Tsakonas, A., 2004. Towards neural-symbolic

integration: The evolutionary neural logic

networks. Proceeding of the 2nd International

IEEE Conference Intelligent Systems.

