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Abstract: Extraction of maximum energy from wind and transferring it to the grid with high efficiency are 
challenging problems. To this end, this study proposes a smart pitch controller for a wind turbine-doubly fed 
induction generator system using a Differential Evolution (DE) based adaptive neural network. The nominal weights 
for the back-propagation neural network controller are obtained from input-output training data generated by DE 
optimization method. These weights are then adaptively updated in time domain depending on the variation of the 
system outputs. The adaptive control strategy has been tested through simulation of complete system dynamics 
comprising of the turbine-generator system and its various components. It has been observed that the DE based 
smart pitch controller is able to achieve efficient energy transfer to the grid and at the same time provide a good 
damping profile. Locally collected wind data was used in the testing phase. 
 
Keywords: Adaptive pitch control, back-propagation neural network, differential evolution, doubly fed generator, 

wind turbine 

 
INTRODUCTION 

 
Most modern wind turbines used in utility are the 

variable speed Doubly Fed Induction Generator (DFIG) 
or Permanent Magnet Synchronous Generator (PMSG) 
types. Although costly power electronics are required to 
convert power at varying frequency, the variable speed 
wind turbines are industry favorite because of their 
better energy capture capability, operation at higher 
efficiency and lower loading (Muljadi and Butterfield, 
2001). When compared with the synchronous generator 
type, the DFIG wind turbine have additional advantage 
in terms of reduced converter losses, independent real 
and reactive power control, grid support through 
reactive control etc. (Lin et al., 2011a) The utility-scale 
turbines generally have three levels of control, the 
uppermost is supervisory control, mid-level turbine 
control and in the lowest level are the pitch actuator 
control, the generator and power electronics control 
(Johnson et al., 2006). 

A major disadvantage of the induction type wind 
generators is their sensitivity to low voltage conditions 
at the grid. Fault ride of DFIG is a matter of intense 
research in the recent times. Various types of controls 
on the converter system have been attempted by several 
investigators. Reference (Vinothkumar and Selvan, 
2011) presents an interesting strategy of low voltage 
ride using a circuit comprising of a rectifier and IGBT 

in the rotor side converter and inductor in parallel with 
it. Voltage source inverter with current controller was 
employed by Muyeen et al. (2011) for fault ride 
through. Hybrid current controllers in the converter 
circuit has been used for improving fault ride through 
capabilities which comprises of a standard PI controller 
in  addition  to  hysteresis  current  controller (Mohseni  
et al., 2011). A voltage source converter connected 
between the generator and grid, termed a voltage 
restorer and a virtual resistance deactivating the normal 
crowbar has been employed for riding low voltages 
(Ibrahim et al., 2011; Hu et al., 2011). Use of FACTS 
(flexible ac transmission system) and energy storage 
devices which supply both real and reactive power have 
the additional advantage that they also provide damping 
to the system during the low voltage recovery. The 
devices which have been used to enhance the wind 
system performance vary from simple static VAR 
controller (Amaris and Alonso, 2011), battery energy 
storage (Mendis et al., 2012), supercapacitor with 
STATCOM (Qu and Qiao, 2011; Rahim and Nowicki, 
2012), etc. Superconducting magnetic energy storage 
(SMES) units can be controlled to supply both real and 
reactive power and are shown to be effective in terms of 
leveling wind power fluctuations as well as low voltage 
ride through (Shi et al., 2011; Yunus et al., 2012). 

The inertia of the turbine-generator rotor is large 

and hence the rotor speed control is relatively slow. The  
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Fig. 1: DFIG system configuration equipped with pitch controller 

 
doubly fed generator based wind plants do not have 
good frequency response characteristics because of lack 
of coupling between grid frequency and output power. 
Also, the DFIG does not have reserve margin in 
maximum power tracking (Zhang et al., 2012). Since 
pitch control is relatively faster the aerodynamic power 
can be regulated to limit rotor speed (Muljadi and 
Butterfield, 2001). Generally, nonlinear strategies are 
involved for power maximization and also for 
frequency regulation analysis (Moutis et al., 2012).  A 
PI (proportional integral) controller has been used for 
generator and pitch actuators using small-signal 
analysis in Riziotis et al. (2008). Maximum energy 
capture using PI and fuzzy logic controllers were 
proposed in Kamel et al. (2011) and Lin et al. (2011b). 
Reference (Kamel et al., 2011) uses PI controllers in 
battery storage system, while (Lin et al., 2011b) 
employs a fuzzy interface to estimate the wind speed 
fluctuations. Applications of intelligent techniques for 
maximizing energy capture have been reported in the 
literature in recent times. Pitch control to regulate the 
output power of squirrel cage type wind generator 
through neural network was reported in Yilmaz and 
Ozer (2009). The output power leveling by generalized 
pitch control has been used in Senjyu et al. (2006). 
Also, artificial neural network has been employed for 
achieving fast and stable response for a stand-alone 
hybrid system (Lin et al., 2011c). 

Generally, in aerodynamic modeling and pitch 

control studies the relatively slower rotor dynamics is 

considered. Since the generator wheels the energy, its 

dynamics should be adequately modeled. Also, because 

of random nature of wind variation, the any control 

design should include the system nonlinearities. This 

makes the pitch controller design difficult. In this study 

a smart pitch control strategy for a turbine-generator 

system is obtained in time domain by using an adaptive 

Back-Propagation (BP) neural network. The back-

propagation network is used because it is known that a 

three layered BP can approximate any nonlinear 

function under any precision (Xu et al., 2012). The 

starting weights for the back-propagation network are 

obtained through an optimum evolutionary algorithm. 

 

SYSTEM MODEL 

 

A block diagram of the wind turbine-generator is 

given in Fig. 1. The converter circuitry of the doubly 

fed induction generator (DFIG) is located between the 

generator stator and rotor terminals. The grid connects 

to the stator through transformer and line. A local load 

is located at the generator terminal bus. The turbine has 

a pitch control system shown in the block diagram. The 

system model includes the turbine dynamics and its 

pitch controller, the DFIG and converter circuitry, the 

line and the load.  

 

The doubly fed generator and converter model: The 

differential equations relating the voltage current and 
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flux of the stator and rotor circuit of a DFIG expressed 

in  per  unit (pu)  quantities  along  the d-q  axes  are: 
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The relationships between the flux linkages and 

currents of the stator and rotor circuits are:  
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The slip (s) of the machine given in the above 

expressions is ( ) /s r sω ω ω− . The input current to the 

converter on the grid side, written in terms of d-q 
components, is Rahim and Habiballah (2011): 
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Here, Ia = ida+jiqa, Vs = vds+jvqs and Ea = eda+jeqa, ω0 

is the base frequency. The DC ink capacitor is located 
between the two back to back converters. Neglecting  

the power loss in the capacitor, the power balance 
yields the following capacitor voltage equation: 

 

1 1 1 1 2 2 2 2

1
= [ cos sin cos sin ]c

da qa dr qr

dV
m i m i m i m i

dt C
α α α α+ + +

                                                          (5) 
 

The modulation index and phase angle of the two 

converter voltages on grid and rotor sides, 

1 2 1 2(  ) and (  )m m α α , relate to the DC capacitor 

voltage Vc through: 
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Aerodynamics and drive model: The rotor drive train 

model for the turbine-generator system in terms of 

torsional angle between the two masses and their speed 

are expressed as: 
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The mechanical input power, which is the turbine 

output, is: 

 

( )2 31
= ,

2
m w pP R V Cγπ λ α                             (8)

 
 

Fig. 2: Mechanical power for various pitch angles at wind speed of 12 m/s 
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Fig. 3: Pitch controller block diagram  

 
Here, Vw, γ, λ, Cp, α are the wind velocity, tip 

speed ratio, density of air, power coefficient and pitch 
angle, respectively. Cp depends � and α through the 
highly non-linear relationship:  
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The electrical power output term in (7) is given as: 
 

=
e qr dr dr qr

P i iΨ −Ψ              (10) 

 
Plot of the turbine power output against generator 

speed for wind speed of 12m/s is given in Fig. 2 for 
different pitch angles. 
 
Pitch controller: Figure 3 presents the block diagram 
of the pitch controller system. The pitch controller is 
actuated between the reference and actual output of the 
generator. From (8) and (9) it can be seen that the input 
power to the generator can be controlled through 
control of pitch angle α. The blade pitch angle depends 
on control of the pitch servos. The pitch servo system 
model includes a rate limiter, an angle limiter, delay 
elements, etc. Conventionally a pitch angle control 
system uses PI controllers to generate the appropriate α. 
While a more detailed servo modeling may be used, a 
first order servo system is sufficient in investigations of 
power system studies. In this study, all the components 
in the pitch control and servo system are included in the 
parameters of the PI controller, dynamic relationships 
of which are: 
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Here, KP and KI are the controller gains to be 

determined; ∆P is the input to the controller and α is the 

pitch angle.  

The composite model of the turbine-generator 

system which includes the pitch control device is 

expressed through the state model: 

[ , ]
[ , ]

x f x u
y g x u
=
=

&                             (12) 

 

The input u represents the pitch controller gains 

and y is the vector of selected output variables. 

 

ADAPTIVE BPNN BASED PITCH 

CONTROLLER 

 

A block diagram of the adaptive back-propagation 

neural network (BPNN) based pitch controller proposed 

in this work is shown in Fig. 4. The core of the 

controller consists of two BP networks, one which 

produces the nominal weight and nominal control (unom) 

through training of a large input-output data set. This 

part of the controller guarantees a stable nominal 

bounded-input bounded output system (Suresh, 2009). 

The other BP network is responsible to modify the 

network weights in time domain depending on the wind 

system transients and generates control ∆u. The pitch 

controller gains are adaptively tuned as ∆u changes. A 

differential evolution (DE) optimization technique is 

employed to create the input-output data for training the 

nominal BPNN network.  The DE optimization 

procedure, the back-propagation and adaptive back-

propagation methods are presented briefly in the 

following. 

 

Differential evolution: In training the neural network 

the objective function used is, generally, multimodal. 

The gradient technique based algorithms for such 

problems may end up producing a local minimum. This 

can be avoided by employing a global optimization 

procedure based on evolutionary methods. Differential 

Evolution (DE) is such a procedure suitable for finding 

global minimum (Slowik, 2011). Although initially 

used for a single objective function, it has the capability 

of handling multi-objective functions and equality as 

well as inequality constraints (Qin et al., 2010). The 

major steps in a DE algorithm are mutation, crossover 

and selection of the population. The final retention is 

through a check of fitness on the population. The steps 

in the search for the pitch control parameters are 

summarized below (Lu et al., 2011). 
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Fig. 4: Adaptive BP neural network-based pitch controller 

 

The various steps involved in the evolutionary 

progression are given below: 

 

• Initialization: In this step, it is required to specify 

the number of control variables or problem 

dimension with their corresponding constraints. For 

each control parameter, a population is generated 

within the search space using the relationship: 

 

[ ]min max min( ); 1, Pkz z random z z k N= + − =
        

(13) 

 

In the above, NP is total number population and NG 

is the number of generations. 

 

• Evaluation and location of the best solution: The 

best solution among the initial population is 

obtained from the objective function: 
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Here, ζk is the damping ratio calculated from 

dominant eigenvalues of the linearized system 

obtained from (12) for each population k and ζ0 is 

the desired damping ratio. The objective function 

in (14) is minimized to provide the optimal 

solution satisfying all the constraints. 

 

• Mutation: The mutation process aims to produce a 

new generation of solutions. For every individual k, 

we build a donor vector Vk from three random 

solutions Zr1, zr2 and Zr3 among the population.  

The difference of any two solutions is added to the 

third through a mutation factor F given by the 

relation: 
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The limit violation in the mutant vector is checked 

through (14): 

• Crossover: This is employed to have a second 

generation  to enhance the diversity employing a 

binomial type crossover given by: 
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 CR represents the crossover factor. 

 

• Selection: The selection process in DE involves 

determining survivor of a generation by comparing 

the trial vector with the parents based on fitness in 

terms of objective value (14): 
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• Stopping criteria: The procedure is continued 

until a solution is reached within pre-specified 

precision or the maximum number of iteration is 

exceeded.  

 

Back propagation neural network: Artificial neural 

networks are parallel and distributed information 

systems which are used to learn complex systems and 

generalize the information learned. The massive 

networks comprise of simple neurons and consist of 

interconnected elements called nodes. The Back-

Propagation Neural Network (BPNN) considered in 

Fig. 4 has three layers-the Input (I), Hidden (H) and 

output (O) layer. The hidden layer comprises of L-1 

sub-layers, the input layer being numbered 0 and output 

layer L. The data is transferred from input to the output 

node through the weight linked hidden neurons using an 

activation function. The activation function considered 

is a sigmoid having the characteristic: 
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The back-propagation algorithm minimizes the 
error function E written as: 

 

2 21 1
( ) ( ) [ ( ) ( ) ]

2 2
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Odj is the desired output corresponding to j

th
 

neuron and k represents the iteration count. The change 
in weight between the i

th
 and j

th
 node is computed by 

using the gradient descent and is written as: 
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The gradient term can be evaluated through a chain 

rule and the recursive relationship for the weight 
updates can be shown to be (Lee, 2008): 
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The computation is accelerated through the 

momentum constant αM is the learning rate parameter 
η1. Note that for i = 0, the weight w0j corresponds to the 
bias at layer lj and Hj

(L)
 = Oj. The back propagation 

algorithm has two different computational directions. In 
the forward direction the weights remain unchanged 
and the signals are computed at different nodes. The 
weights are updated in the backward pass from the error 
signal propagated backwards. 
 
Adaptive back-propagation neural network: The 
back-propagation network is trained through a large 
input-output data set which, in turn, is generated by DE 
algorithm. The trained weights are then used to 
calculate the nominal value of controller parameters 
(unom) for a certain operating condition. Depending on 
the variation of system outputs from their desired 
values, the control parameters are updated as time 
advances according to the relation: 

 

n o mu u u= + ∆                                             (23) 

 
The weight adaptation process is carried out by 

minimizing the mean square error Ec(t) at each instant 
of time expressed as:  
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Here, y(t) is the output vector given in (12) and r(t) 

is the desired output. The gradient descent method 
gives the change in weight: 
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             (25) 

 

The weight update is obtained by adding the 

change with the nominal value generated by training the 

input-output data set and is finally expressed by: 

 
( ) ( ) ( )

( ) 2
( ) ( ) ( )l l l

ij ij n o m j i
w t w t y tη γ= +        (26) 

 

The expression for γj is similar to that given in 

(22). The output can be found from (12) or from online 

measurements.  The nominal values of wij are assumed 

to remain constant during the process time. 

 

TESTING THE ADAPTIVE PITCH 

CONTROLLER 

 

The proposed adaptive pitch controller strategy 

was tested on the turbine-generator system of Fig. 1. 

The ability of the pitch control strategy to transfer the 

wind power under varying wind speed condition was 

investigated considering different wind speed 

conditions. The nominal power output of the DFIG at a 

speed of 12 m/s is 0.9 pu. The parameter values of the 

various components are included in the Appendix.  The 

nominal gains of the pitch controller are considered as 

KP = 1, KI = 0. Responses with two types of wind speed 

variation are reported here -a step change of wind speed 

and random speed change as recorded at a local site.  

Figure 5 to 7 show the plots of various responses 

for a step change in wind speed from 12 m/s to 11 m/s. 

The speed change is affected at t = 1s. In the absence of 

pitch control the wind power output at the new speed is 

0.82 pu. Figure 5 shows the power input to the 

generator (solid line) and power output with and 

without    adaptive    pitch controller (dotted and dashed  

  

 
 
Fig. 5: Generator power input and output variation for a step 

decrease of wind speed by 1 m/s. The step  change  is 

made at t = 1s 
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Fig. 6: Generator speed variation corresponding to Fig.5 with, 

(a) proposed adaptive neural network based pitch 

control and (b) nominal pitch control 

 

 
 
Fig. 7: DFIG stator current with a step change corresponding 

to Fig. 5, with (a) adaptive neural network pitch 

control and (b) nominal pitch control 

 

 
 

Fig. 8: Variation of PI controller gains following a step 

change in wind speed corresponding to Fig. 5 

 

lines). Examination of  Fig. 5 reveals that the generator 

output power follows the wind power very closely with 

the proposed adaptive neural network based control. 

 
 
Fig. 9: Normalized wind speed record collected at the local 

site 
 

 
 
Fig. 10: Wind power and electrical power output with and 

without adaptive BPNN pitch control for the random 
wind speed variation of Fig. 9 

 

 
   

Fig. 11: Generator speed variation for random wind speed 
variation of Fig. 9 with, a) adaptive neural network 
based pitch control, b) pitch control with nominal 
parameters 

 

Figure 6 and 7 show the variations of the generator 

speed and stator current with the proposed adaptive 

pitch  control  strategy  and  with  nominal  control. The  
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Fig. 12: Generator stator current variations with random wind 

speed variation with, (a) adaptive neural network 

based pitch control and (b) nominal pitch control 

 

 
 

Fig. 13: Controller parameter variations with the adaptive 

control for the randomly changing wind speed 

condition of Fig. 9 

 

 
 

Fig. 14: Pitch angle variations with the adaptive neural 

network control for randomly varying wind speed 

changes of Fig. 9. The nominal angle is shown by the 

dotted line 

 

figures indicate that the proposed control affects 

transfer of wind power to the grid with a very good 

damping profile. Figure 8 shows the variation of the 

controller gains during the adaptation period. Note that 

it is the variation of these parameters which contribute 

to the improved system performance. 

Figure 9 shows the wind speed data recorded at the 

local wind generator station for a period of 1000s. The 

actual wind data has been normalized and scaled around 

a nominal value of 11 m/s. The transient responses 

shown in Fig. 10 to 14 are for the interval of 1s to 10s 

of the record of Fig. 9, wind speed kept constant at 

11m/s for the first 1s. A comparison of the power input 

to the generator (wind power), electrical power output 

with the proposed adaptive pitch control and also with 

nominal pitch control is presented in Fig. 10. From the 

response it can be seen that pitch controller makes the 

generator output track the wind power very well. 

Records of generator output power, speed and stator 

current, shown in Fig. 10 to 12, show that the adaptive 

control is very effective in damping the electrical 

transients even for this randomly varying wind speed 

changes. Figure 13 shows the variation of the controller 

gains over the 10s period. Figure 14 shows the variation 

of the pitch angle during this period. It can be observed 

that the pitch angle change is not large during the 

transient period.   

 

CONCLUSION 

 

This study proposes a novel adaptive pitch 

controller for a wind turbine-DFIG system for 

transferring wind power to the grid efficiently. Contrary 

to conventional offline neural network designs, the 

proposed controller adapts the network weights in time 

domain depending on system transients. In normal 

maximum power transfer problems only the turbine 

generator rotor dynamics is considered, while this study 

incorporates a detailed model of the generator and its 

converter circuitry along with the turbine 

aerodynamics. The simulation results show that the 

neural network based pitch controller enables the 

electric power to follows the mechanical power closely 

by varying the blade pitch angle adaptively. 

This is achieved with minimum transients in the 

generator system. The differential evolution technique 

used in training the neural network is an efficient 

method to find the global minimum. The proposed 

adaptive back-propagation algorithm is computationally 

simple. 
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APPENDIX 

 

Nomenclature and system data: 

Mean wind speed (VW)  12 m/s 

Radius of the blades (R)  13.5 m 

Density of air (γ)  1.225 kg/m2 

Turbine intertia (Ht)  2 s 

Generator intertia (Hg) 0.5 s 

Shaft stiffness (Ks)  0.3 p.u/el.rad 

Stator reactance (xs) 0.09241 p.u 

Stator resistance (Rs)  0.00488 p.u 

Rotor reactance (xr)  0.2 p.u 

Rotor resistance (Rr)  0.0059 p.u 

Mutual inductance (xm)   3.95379 p.u 

Grid side converter resistance (Ra)  0.001 p.u 

Grid side converter reactance (La)  0.1 p.u 

Line resistance   0.02 p.u 

Line reactance   0.15 p.u 

DC link capacitor (C)    1.0 p.u 
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