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INTRODUCTION

The notion of a I -ring was first introduced as an
extensive generalization of the concept of a classical
ring. From its first appearance, the extensions and
generalizations of various important results in the
theory of classical rings to the theory of I'-rings have
been attracted a wider attentions as an emerging field of
research to the modern algebraists to enrich the world
of algebra. Many prominent mathematicians have
worked out on this interesting area of research to
determine many basic properties of I'-rings and have
extended numerous remarkable results in this context in
the last few decades. All over the world, many
researchers are recently engaged to execute more
productive and creative results of I'-rings. We begin
with the definition.

Let M and I' be additive abelian groups. If there
exists a mapping (X,a,y) > Xay of MxI'xM-oM,

which satisfies the conditions:

e (Xay)eM

(X+Y)az=xaz+yoz X(a+f)z=Xaz+xpz

xa(y+z):xay+xaz, ’

o XaY)Bz=Xa(YBDior  all
and @Bl ,then M iscalled a I" -ring.

X,Y¥,2eM

Every ring M is a I'-ring with M =T However a T’
-ring need not be a ring. Gamma rings, more general

than rings, were introduced by Nobusawa (1964).

Bernes (1966) weakened slightly the conditions in the

definition of T-ring in the sense of Nobusawa (1964).
Let M be aI" -ring. Then an additive subgroup  of

M is called a left (right) ideal of M if
MI'U cUUTM cU). If Uis a left and a right

ideal, then we say U is an ideal of M . Suppose again
that M is a I'.-ring. Then M is said to be a 2-torsion free

if 2X=0 implies X=0 for allXe M . An ideal P,
of aT -ring M is said to be a prime if for any ideals A
and B of M, ATBc P, implies Ac Por BCP,.
An ideal P2 of a I'-ring M is said to be semiprime if for
any ideal U of M, Ur'u < P, implies U c P,. A I'-ring
M is said to be prime if aI'MI'b = (0) with,
a,beM implies a=0 or b=0 and semiprime if
alMra=(0) with aeM implies a=0.
Furthermore, p is said to be commutative I'-ring if
Xay = YyoX forall X,y € M and o eI". Moreover,
the set Z(M)={xeM:xay=yax for all @ €I and
y € M} is called the centre of the I'-ring M.

If M is al -ring, then [X,y], = Xay — yax is
known as the commutator of X and Y with respect to

o, where x,ye M and a €I". We make the basic
commutator identities:
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[xay,z], =[x 21,09 + X[a, Bl,y + xaly, 2] ,and
[x,yozl, =[x Yl 0z +Yle, Bl 2+ yalx,z] , Tor

all x,y,zeM and «,fel’. We consider the
following assumption:
o Xoypz=xpyoz (A for all

X,y,zeM g Bel

According to the assumption (A), the above two
identities reduce to [xay,z], =[x,z] ;9 + xaly, 2],
and  [x,yazl, =[x, Yl 0z + ya[x,z] , which we

extensively used.
An additive mapping T : M — M is a left (right)

centralizer if T(xay)=T(X)ay[T (Xxay) = XxaT (Y)]
holds for all X,y¥,Z€ M and &, f €. A centralizer

is an additive mapping which is both a left and a right
centralizer. For any fixed aeM and ael,, the
mapping T(x) = aax is a left centralizer and T(x) =
xaa is a right centralizer. We shall restrict our
attention on left centralizer, since all results of right
centralizers are the same as left centralizers. An
additive mapping D : M — M is called a derivation if
D(xay) = D(x)ay + xaD(y)holds for all
x,y € M and a el and is called a Jordan derivation if
D(xax) = D(x)ax + xaD(x) for allxe M andaeT .
An additive mapping T : M — M is Jordan left (right)
centralizer if T(xax) = T(x)ax(T(xax) = xaT(x))
forallxe Manda el .

Every left centralizer is a Jordan left centralizer but
the converse is not in general true.

An additive mappings T: M — M is called a
Jordan centralizer if (xay+ yax) =T(x)ay +
yaT(x) , forall x,y e M and a € T' . Every centralizer is
a Jordan centralizer but Jordan centralizer is not in
general a centralizer.

Bernes (1966), Luh (1969) and Kyuno (1978)
studied the structure of I' -rings and obtained various
generalizations of corresponding parts in ring theory.

Zalar (1991) worked on centralizers of semiprime
rings and proved that Jordan centralizers and
centralizers of this rings coincide. Vukman (1997,
1999, 2001) developed some remarkable results using
centralizers on prime and semiprime rings.

Ceven (2002) worked on Jordan left derivations on
completely prime T -rings. He investigated the
existence of a nonzero Jordan left derivation on a
completely prime T-ring that makes the T-ring
commutative with an assumption. With the same
assumption, he showed that every Jordan left derivation
on a completely prime T'-ring is a left derivation on it.
The commutativity condition of a prime ring has been
studied by Mayne (1984) by means of a Lie ideal of R
and with a nontrivial automorphism or derivation. Ullah

and Chaudhary (2010) proved that if T is an additive
mapping of a 2-torsion free semiprime ring with
involution * satisfying T(xx) =T (x)9(x") = 0(x")T(x) , then
tis a 8-centralizer.

Hoque and Paul (2011) have proved that every
Jordan centralizer of a 2-torsion free semiprime T -ring
M satisfying a centain assumption is a centralizer.
Hoque and Paul (2012) have proved that if T is an
additive mapping on a 2-torsion free semiprimerl’ -ring
M with a certain assumption such that T(xayBx) =
xaT(y)Bx, for all x,yeM and a, Bel, then T is a
centralizer.

Ullah and Chaudhary (2012), have proved that
every Jordan 6-centralizer of a 2-torsion free semiprime
' -ring is a 6-centralizer. Hoque et al. (2012) proved
that T is a @-centralizer by using a relation
2T (aabfa) =T (a)ad(b) 56(a) + 6(a)ad(b) AT (a), where
T is an additive mapping on a 2-torsion free
semiprimerl -ringM.

Our research works inspired by the works of
Hoque et al. (2012) in T -rings with 6-centralizers. Here
we prove that if M is a 2-torsion free semiprime I'-ring
satisfying the assumption (A) and if T: M — M is an
additive mapping such that:

T(xaypx) = 6(x)aT (y)B6(x) )

For all x,ye M, a,8 el and 6 an endomorphism
on M, then T is 6 -centralizer. Also we show that T is a
centralizer if M contains a multiplicative identity 1.

THE 6-CENTRALIZER OF SEMIPRIME
GAMMA RINGS

In this section, we have given the following
definitions:

Let M be a 2-torsion free semiprime I' -ring and let
6 be an endomorphism of M. An additive mapping T :
M — M is a left (right) 6-centralizer if T(xay) =
Tx)ab(y)(T(xay) = 0(x)aT(y)) holds for all
x,y e Mand a e T. If t is a left and a right 8-centralizer,
then it is natural to call T a 6-centralizer.

Let M be a I'-ring and let @ e Mand a € T be fixed
element. Let 6 : M — M be an endomorphism. Define
a mapping T: M — MbyT(x)aa 6(x). Then it is
clear that is a left 8-centralizer. If T(x) = 0(x)aa is
defined, then T is aright 8-centralizer.

An additive mapping T : M — M is a Jordan left
(right) 6-centralizer if T(xax) = T(x) a(x)(T (xax)
= 6(x)aT(x))holds for all x e Manda € T .

It is obvious that every left 6-centralizer is a Jordan
left 6-centralizer but in general Jordan left 8-centralizer
is not a left 6-centralizer.

Example 2.1 Let M be aT-ringand let d : M — Mbe
a left 6O-centralizer, where 6: M — Mis an
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endomorphism. Define M; = {(x,x) : x e M}and T} =
{(a,a) : a eT}. The addition and multiplication on M,
are defined as follows: (x,x) + (v,y) = (x +y,x + y)
and  (x,x)(a,)(y,y) = (xay,xay). Under these
addition and multiplication, it is clear that M, is a I}-
ring.

Define T((x,x)) = (d(x),d(x)) andd, ((x,x)) =
(8(x),08(x)) . Then T is an additive mapping on M,and
6, is an endomorphism on M; . Now, let a = (x,x),
y = (a, a),then we have:

T(aya) = T((x, x)(a, a)(x, x))
= T((xax, xax))

= (d(xax),d(xax))

= (d(x)ab(x),d(x)ab(x))

= (d(x), d(x)) (@, @) (8(x), 6(x))
=T ((x, x))(a, @), ((x, x))
=T(a)yb:(a).

Therefore, T is a Jordan left 6, -centralizer which is
not a left 6-centralizer.

Let M be a I'-ring and let 8 be an endomorphism
on M. An additive mappingT : M — M is called a
Jordan @-centralizer if T(xay + yax) = T(x)af(y) +
0(y)aT (x), for all x,y e Mand a eI It is clear that
every B-centralizer is a Jordan 6-centralizer but the
converse is not in general a 6-centralizer.

An additive mapping D: M — M is a (0,6)-
derivation if D(xay) =D(x)ab(y) + 0(x)aD(y)
holds for all x,y e Mand a e I"and is called a Jordan
(6, 0)-derivation if D(x,x) = D(x)ab(x) +
8(x)aD(x) holds for all xe M and a el .Now we
begin with two examples which are ensure that a 6-
centralizer and a Jordan @-centralizer exist in I'-ring.

Example 2: Let Mbe a TI-ring satisfying the
assumption (A) and let a be a fixed element of M such
that a e Z(M), the centre of M. Define a mapping T :
M — Mby(x) = aaf(x) +0(x)aa , where 8 : M —
M is an endomorphism and aelis a fixed
element. Then for all x,y e Mand I" , we have:

T(xBy) = aab(xBy) + 6(xBy)aa
= aad(x)BO(y) + 6(x) B0 (y)aa
= aaf(x)BO(y) + 0(x)ab(y)Ba, { using (A)}
= aaf(x)BO(y) + 6(x)aapb (y), {acZ(M)}
= (aafb (x) + 6(x)aa)B6(y)

Also, T(xBy) = aaf(x)BO(y) + 0(x)BO(y)aa
= 0(x)aapo(y) + 0(x)0(y)aa, {aeZ(M)}

= 0(x)aad(y) + 6(V)O()aa, {using (A)
= 0(x)B(aab(y) + 6(y)aa)

= 0(x)BT ().

Therefore, T is a left and right & —centralizer, so T
isaf — centralizer.

Example 3: Let MbeaT-ringandletd : M - M be a
0-centralizer, where 8 : M - M is an endomorphism.
Define M; = {(x,x):x e M}andT; ={(a,a):a €T}.
Define addition and multiplication on M; as follows:
)+ @y)=x+y,x+y) ad (x,x)(aa)
(y,y) = (xay,xay). Under these addition and
multiplication M, is a T;-ring.Define T((x,x)) =
(d(x),d(x))and  6;((x,x)) = (8(x),8(x)). Then T is
additive mapping and 6, is an endomorphism on M,.
Leta = (x,x),y = (a,a) ,b = (y,y). Then we have:

T(ayb + bya) =T(xay + yax,yax + xay)

= (d(xay + yax),d(yax + xay))

= (d(xay) + d(yax),d(yax) + d(xay))

_ (d(x)ae(y) +0(y)ad(x), H(y)ad(x)>
+d(x)ab(y)

= (d)ab (), d(x)ab(y))

+HOMad(x), 6(Y)ad(x))

= (d(x),d(x))(@, a)(6(»),0())

+ (00,60 (@ @) (dx),d(x)

= T((x, %)) (@, )6, (7, 1))

+6,((7,3)) (@ )T((x, x))

=T(a)y6,(b) + 6,(b)yT(a)

Therefore, T is a Jordan 6, -centralizer on M,
which is not a 8-centralizer.

For proving our main results, we need the
following Lemmas:

Lemma 1: (7, Lemma 1) SupposeM is a semiprime I'-
ring satisfying the assumption (A). Suppose that the
relation aaxfb + baxfc = 0 holds for all x € M, some
a,b,ce Mand a,B € T. Then (a + c)axBb = 0 is
satisfied for all x €e M and a, 8 € T.

Lemma 2: Let M be a 2-torsion free semiprimel’ —ring
satisfying the assumption (A) and let T: M — M be
an additive mapping. Suppose that T(xayBx) =
0(x)aT(y)B6(x)holds for all x,ye M and a,B €T.
Then:

D [[T(x), ()]0, 6(x)]p =0

(i) 0BT (x), 6(x)] yO(x) = 0
(i) 6()B[T (x), 0(x)]« = 0

(iv) [T(x), 0(x)]« BO(X) = 0

@) [T(), 8(x)]e = 0.

Proof: We prove (i)

[T () o(x)...6(x)], =0 @

For linearization, we put X+ Z for X in
relation(1),we obtain:
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T(xayfz + zaypx) = A(x)aT (y)BAz) + H(Z)aT(y)ﬁe(x)( )
3
Replacing y for X and Z for y in (3), we have:

T(xexpy + yoxx) = O(x)aT (X)) + Oy )T (X)ﬁ6’(>(<))
4

For z = (on)2 X inrelation (3) reduces to:

T (xayﬂ(xa)z X+ (xa)? xayﬁx)

= (o (y)B6\(xcr} Jo(x)-+ 6{(xcr } Jo(x)orT (y)pe(x)

_ _ _ ()
Putting y = xayfX in (4), we obtain:
T((Xa)2 X8y X + xﬂy,b’(xa)z)
= 9(x)aT (x)sex)adly)BAX)+ O(x)ady) BN x)aT (x)ﬂ@(é))

The substitution xoxpy+ yexpgxfor y in the
relation (1) gives:

T ((xa ) xpy B¢+ (xa ) xpyBx)= O(x)eT (xaxy + y o) BO(X)

which gives because of (4):

T ((Xa)z XBy X + xpyB(xe ) x)
= 0(xa )" T (x)BO(y)BO(X)+ 0(x)a6(y) T (x ) (x)BO(X)

()
Combining (6) and (7), we arrive at:
T (x)a[T (). 6(x)], Ay )BAX)— O(x)
aé(y)B[T (x).6(x)], s6(x) =0 @

Using Lemma 2 in the above relation, we have:

O(x)ar &y )BT (X)atAx)B0(x) - O(x)r Ay )BAX)
o (x)B0(x) - 0(x)eT (x), O(x)], B y)BeAx) =0

T(x)ab (x)ab (y)B6 (x) 6 (x)
— 6(x)aT (x) B0 (x)ab(y)B6 (x)
— 6()a[T(x),0(x)]L0(y)BO(x) =0

T(x)ad(x)B6 (x)ab (y)B6(x)
—60(x)aT (x)B6(x)ab (y)B6 (x)
— 0()a[T(x),0(x)]LO(y)BO(x) = 0

(T()ab (x) — ()aT (x))BE (x)ab ()6 (x)
— 0()a[T(x),0(x)]LO(y)BO(x) = 0

[T (x), 6(x)] B0 (x) a6 (y)BE (x) —

6 ()BT (x),6(x)],ax6(y)BO(x) = 0
([T (), 6(x) 1,86 (x)

—0()BIT(x), 0(x)])ab(y)BO(x) = 0

[([T(x),0(x)]a 8 ()] pa0(¥)BO(x) =0 )
Lety = ya[T(x), 8(x)], in (9),we have

([T (), 8()] e, 8()]gab(¥)a[T(x),6(x)],
Bo(x) =0 (10)

Right multiplication of (9) by «[T(x), 8(x)], gives:

[[T(x), 0(x)] o 8(x)]pab(y)BO(x) [T (x),8(x)],
=0 (11)

Subtracting (11) from (10) one obtains:

[[T(x), 0] e, 0] pad(@)al[T(x), 8(x)]s,0(x)]p
=0

Since M is semiprime, so (2) follows, i.e.,

[[T(x),0(x)]a 8(x)]z =0
Now, we prove the relation (ii) :

6 ()BIT(x),0(x)]y8(x) =0 12)

The linearization of (2) gives:

[([TC0), 6()]0()]p + [[TH), 0(x)]a, 6]
HITG), 0], 6] g

HIT ), 6()]a 6] + [[T(X), 6()]a, 6 ()]
HITB), 0(¥)e, 0(x)]g = 0

Putting x = —x in the above relation, we have:

[[TC), 6], 03] + [ITB), 0 ()], 6] 5
~[ITG), 0], 6] + [T, 6 (3], 6] 5
=[TCe), 00)]a 6]

([T, 0)15.6(0)]; =0

Adding the above two relations, we have:

2[[T(x), 0], 6] g + 2[[T(x), 0(¥) e, 6(x) ]
+2[[T(»), 0], 0(x)]g =0

Since M is 2-torsion free semiprime I'-ring, so, we
have:

([T (), 0 ()], 0] + [[T (), 6(0)]a, 6(x)]p +
[([T(»), 0] =0 (13)

Putting xfyyx for y in (13) and using (1), (2), (13)
and assumption (A), we have:
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o

= [[T(x),0(x)]q 0(x)BO(Y)YO(X)] s
+ [[T(x), 6()BO(IYO ()]0, 6 ()]
+ [[6C)BT (YO (x),0(x)] 4 H(x)]
= 00)B[[T(x), 0(x)]0 0] VH(x)
+[[T(x), 8(x)].80 (y)yO(x)
+0()BIT (%), 0(¥)]ay8(x)
+0()BOIYVIT(X),0(x)], 0 ()] 4
)BT (x), 0(x)] 4 0()]py0(x)
+ [T (x), 0(x)]L[0(y), 8(x)]5760(x)
+ 6)BI[T(x), 6(¥)]e 6(x)]5v0(x)
+0()y[0(¥), 0(x)]BIT(x),0(x)],
+ 0BT, 0(x)]q 6(x)]v0(x)
=[T(x), 0(x)]B[0(y), 6(x)]5v6(x)
+0()y[0(¥), 0(x)]BIT(x),0(x)],
= [T(x), 6(x)]B0(¥)B\B(x)YO(x)
—6(x)Y8(x)BO(y)B[T(x), 6(x)] +
0(x)Y0(y)BO(X)B[T(x), 6(x)]_«
= [T(x), 8(x)]_a BO(X)BO(Y) YO ().

Therefore, we have:

[T(x), 8(x)].B0()B\O(x)yO(x)
—60(x)y0()BO)BIT (x),6(x)],
+6(x)y0()BO(x) BT (x),6(x)],
—[T(x), 0(x)],B0(x)BO(y)y6(x) =0

For all x,y € M, €T, which reduces because of (3)

and (8) to:
Left multiplication of the above relation by xp gives:

0(x)B[T (x). 6(x)], sAly)Bo(x)yo(x)BAy)A[T (x).6(x)], =0

One can replace in the above relation
according to (15), 6(x)B[T(x), 8(x)]« PO(y)BO(x) by
H(X)ﬁe(y) [T(X) Q(X)] /BH(X) which glVES.

o(x)BAy)BIT (x),6(x)], BA(x)y6(x)
—0(x)BO(x)BO(x)y(y)B[T (x),0(x)], =0

(14)

Left multiplication of the above relation by T(x)a gives:

T(x)a0(x)BAy)BIT (x), 6(x)], BO(X)r6(x)
~T(x)a0(x)BO(x)BAX)yo(y)B[T (x),6(x)], =0

The substitution T(x)a6(y) for y in (14), we have:

O(x)AT (x)acy)BIT (). 6(x)], SEx)ré(x)
~0()BOX)BOCT (XNt )BT (x).6(x), =0 3

Subtracting (16) from (15), we obtain:

(15)

[T (x).0(x)], Ba(y)B[T (x), 6(x)], BOX)y6(x)
- [T (x).0(x)BaAx)yo(x)], BAy)BIT (x),6(x)], =0

From the above relation and Lemma-2.1, it follows that:
([T (x). o(x)sa(x)yo(x)1, —[T (x).6(x)], seAx)
ro(x))Bely)BIT (x). 6(x)], =0

which reduces to:

(0(x)BT (x). 6(x)], 70(x)+ 6(x)B6(x)
7T (x).6(x)L,, )BAY)BIT (x). 6(x )} = 0

Relation (2) makes it possible to write
[T (). 0(x)L, 6(x)  instead of = H(x)y[T (x)o(x)],
which means that 9(x)B6(x)y[T(x),0(x)], can be

replaced by Q(X),B[T(x), Q(X)]a 7/6?(x) in the above
relation. Thus we have:

O()BIT (x). 0(x)L. 7o(x)BAY)BIT (x) &)L =

Right multiplication of the above relation by y0(x)
and substitution 6(y)po(x) for 6(y) gives
finally,6 () [T (x), 6 (x) ], y0 (x) 6 (y) 6 (x)
BIT(x),0(x)],y0(x) =0

Hence by semiprimeness of M, we have

6 ()BIT(x),6(x)]y8(x) = 0.

Next we prove the relation (iii):

0(x)BIT(x),0(x)],=0,x€ M,ae ' (17)

First, we putting 8(y)a8(x) for 8(y) in (8), gives
because of (12):

6 () a[T(x), 6(x)]BE(y)ab(x)B6(x) =0 (18)
The substitution 8 (y)aT (x) for 8(y) in (25), we have:
6 () a[T(x), 6(x)] B (y)aT (x)ab(x)B6(x) = 0 (19)
Right multiplication of (18) by aT (x),

6 () a[T (x), 6(x)]BE(y)ab (x) 6 (x)aT (x) = 0 (20)
Subtracting (20) from (19), we have:

0 (x)a[T(x), 8(x)]f0(y)a(T (x)ab (x)pO(x)
—0(x)BO(x)aT(x)) =0
= 0(x)a[T(x), 9(?6)] «BO)a[T(x),0(x)B0(x)],

= 0()a[T(0), B(x)]aﬁG(y)a([T(X) 6(x)]B6(x)
+0()BIT(x), 6(x)],) =0
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= ()BT (), 6(x)]ab0(Y)a([T(x), 6(x)],B6(x)
+0()BIT(x), 0()],) =0

According to (2), one can replaced
[T(x), 6(x)].BO(x) by O(x)B[T(x),6(x)], which
gives:

) BIT(x), 0(x)]oab (y)ab(x) BT (x), 0(x)],

=0,x,yEM,a,pf € I
Hence by semiprimenessof M, g(x)A[T (x),6(x)], =0

X, yeM, a,pel.
Finally, we prove the equation (u) :

[T (x),600],=0 (21)

From (2) and (17), it follows that:
[T(x),0(x)],B0(x)=0,xeM,a, B el

The linearization of the above relation gives (see
how relation (13) was obtained from (2)):

[T (), 6001, £6(y) +[T (%), 6(Y)]..
BOX) +[T(y), 0], BO(x) =0

Right multiplication of the above relation by
BT (X),X],, gives because of (17):

[T (), 0001, BO(Y) AT (x), 0(X)],, =0
which implies [T (x), 8(x)], =0.

Lemma 3: LetM Dbe I'- ring satisfying the
assumption (A) and let T:M — M be an additive

mapping such that T (XaypX) = 8(X)aT (y)LO(X)
holds for all x,y,e M and «, # € I".Then:

O(X)a(T (xay + yax) =T (y)ad(x) - O(x)aT (y) f6(x) = 0
(22)

Proof: The substitution Xoy + YoX for yin (1)
gives:

T (Xaxay X + xayaxfx) = 0(X)aT (xay + yox) fO(X)
(23)

On the other hand, we obtain by putting z = XaX
in (3), we have:

T (Xaxaypx + xay fxax) = 0(X)aT (Y)a6(x)
BO(X) + 0(x)a0(x)aT (y) O(X)

T (xaxaypx+ xayaxpx) = 0(x)aT (y)
aB(x) BO(X) +O(X)ax8(X)aT (y) BO(X) (24)

By comparing (23) and ( 24), we have:

O(X)a(T (xay + yox) =T (y)ad(x)
—0(X)aT (y))pO(x) = 0.

We define:
G, (0(X), 0(y)) =T (xay + yox) =T (y)ad(x) — 0(X)aT (y).
Then it is clear that:

O(x)aG,, (9(x), 6(y)) 6(x) = 0 and
G, (0(x),0(y)) = G, (0(y), O(x)).

Replacing x for y and using (22), we have:

a(y)aG,, (6(x),6(y))p6(y) =0. We can also easily
prove the following results : —

@ G, (0(x)+8(2),6(y)) =G, (0(x), 0(y))

+G, (0(2),0(y))

(2) G,(6(x),6(y)+6(2) =G, (6(x),6(y)) +G,(6(x),0(2))
Q) G,.,(0(x),6(y)) =G, (6(x),6(y))
+G,(6(x),6(y))

4) G, (-0(x),0(y)) =-G, (6(x),6(y))

() G, (0(x),-6(y)) =-G, (6(x),6(y)) .

Lemma 4: Let M be a 2-torsion free semiprime TI'-
ring satisfying the assumption (A) and let T:M - M
be an additive  mapping. Suppose  that
T (xaypX) = 0(X)aT (y)B(x) holds for all x,yeM
and a,Bel . Then:

@ [G,(9(x).0(y)., 0(x)], =0
(b) Gu(6(x),0))=0

Proof: First we prove the relation (a):

[G, (0(x),6(y)), 0(x)],, =0 (25)

The linearization of (21) gives:

[T (x), 6(Y)]., +[T(y), 6(x)], =0 (26)

Putting Xay + YaX for y in the above relation
and using (21), we obtain:

[T (%), 0()ad(y) + O(y)aO(X)],, +[T (xay + yex), 6(x)], =0
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= 00T (x) &y ), +[T (). 0(y)], 0(x) + [T (xayy + yex) A(x])], =0

= [T (xay + yax).6(x)], +6(x)a{T (). 6(y)], +[T (x).&(y)], z6(x) =0
According to (26) one can replace [T(x),6(y)], by

—[T(y).6(x)], in the above relation. We have
therefore:

[T (xay + yax), 6(x)], —6(x)a[T (). 6(x)],
~[T(y)6(x)],a0(x)=0
ie. [G,(0(x).0(y)).o(x)], =0

The proof is therefore complete.
Finally, we prove the relation (b):

G, (0(x).0(y)=0

From (22) one obtains (see how (13) was obtained
from (2)), we have:

0(x)aG,, (0(x),0(y))pA2) + 0(x)aG,,
(0(2).0(y)BOAX) + 0(2)eG,, (6(x). 6(y)) = 0

Right multiplication of the above relation by
G, (6(x),6(y))x&(x) gives because of (22):

O(x)aG, (0(x), 6(y))BA2)BG, (0(x), 6(y))a A x) = 0

(28)

(27)

Relation (25) makes it possible to replace in (28),

0(x)aG, (6(x).6(y)) by G, (6(x)6(y)é(x). Thus

we have:
G, (6(x). oy ) bx)5(2)5G,, (6(x), 6y ) x) =( 0)
29
Therefore by semiprimeness of M:
G, (6(x). 6(y))etx) = 0 (30)

Of course, we have also:
O(x)aG, (0(x), 6(y)) =0
The linearization of (30) with respect to X gives:
G, (0(x), 6(y)ab(z) + G, (6(z), 6(y)ab(x) =0

Right multiplication of the above relation by
aG,, (0(x), 6(y)) gives because of (31):

G, (0(x), 6(y))ab(z)aG, (6(x), (y)) =0 (31)

which gives G_, (@(x), €(y)) =0 ie,
T(xay +yax) =T(y)ad(x) +6(x)aT (y)
Hence the proof is complete.

Theorem 1: Let M be a 2-torsion free semiprime I'-ring
satisfying the assumption (A) and let T:M —M be an
additive mapping. Suppose that T(xoxpx) =
0(x)aT(x)BO(x) holds for all XxeM and «, BT .

Then T is a @ -centralizer.

Proof: In particular for
reduces to:

Yy =X, the relation (32)

2T (Xax) =T (X)aO(X) + O(X) T (X)
Combining the above relation with (21), we arrive at:

2T (xax) = 2T (X)x 6(X), xeM,ael
And

2T (xax) = 26(X)aT (), xeM,ael .

Since M is 2-torsion free, so we have:

T(xax) =T (X)ab(x),

T(xox) = 6(x)aT (x),

By theorem 3.5 in Ullah and Chaudhary (2012), it
follows that T is a left and also right 6—centralizer
which completes the proof of the theorem.

Putting y = x in relation (1), we obtain:

xeM,ael
xeM,ael

T (xaxpx) = O(X)aT (X)BAX), x e M, e, BT (33)

The question arises whether in a2-torsion free
semi-prime I'-ring the above relation implies that T is a
0-centralizer. Unfortunately we were unable to answer
affirmative if M has an identity element.

Theorem 2: Let M be a 2-torsion free semi-prime I'-
ring with identity element 1 satisfying the assumption
(A) and let T:M — M be an additive mapping.

Suppose that T (xaxx)=6(x)aT (x)B6(x) holds for
all xeMand a,fel".ThenTisa @ -centralizer.

Proof: Putting x+1 for x in relation (33), one obtains
after some calculations:

3T (xax)+ 2T (x) = T(X)BAX)O(X )T (x)
+6(X)eafAx)+aad(x)+ O(x)pa
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where a stands for T(1). Putting —x for x in the relation
above and comparing the relation so obtain with the
above relation we have:

BT (xax) = 2T (X)BA(x)+ 20(x)aT (X) + 20(X Joa A x)

(34)
and
2T (x) = aaf(x)+ O(x)Ba (35)

We shall prove that aez(M).According to (35)
one can replace 2T(x) on the right side of (41) by
aad(x)+6(x)Ba and 6T (xax) on the left side by

3aa(x)BO(x)+30(x)BA(x)ea, Which gives after some
calculation:

aad(x)BAx)+ 6(x)BA(x)aa - 26(x)aafAx) = 0
The above relation can be written in the form:

[[a,0(¥)],,0(X)], =0;xeM,a,Bel (36)

The linearization of the above relation gives:
[[a, 001,61, +[[a,6(Y)],,0(x)], =0  (37)

Putting Yy = Xay in (37), we obtain because of
(36) and (37):

0=[[a,8(x)],, O(X)a&(y)], +[[er, O(x)x&(Y)],., O(X)] 5
=[[a,0(x)],., 0(x)] , BO(Y)]+ O(x)
a[[a,0(x)],6(y)], +[[a,0(x)], 2 6(y)
+0(x)ala,0(y)],,,0(x)],
=0(x)af[a,0(x)],,0(y)], +[[a,0(x)],
ad(y),0(x)], +[0(x)ala, 0(y)], . 0(X)],
=0(x)al[a, 6(x)],,,0(y)], +[[a,6(x),

0(x)1, BO(y) +[a,0(x)],, BLO(Y), 6(X)],
+[0(X)ala,0(y)],.0(x)] ,

=[a,0(x)], ALO(y), 6(X)],

The substitution g(y)pa for 4(y)in the above
relation gives:

[a,6(x)], s6(y) pla,0(x)],, =0

Hence it follows aez(M), which reduces (35) to
the form T(x)=aaf(x), xeM,a el The proof of

the theorem is complete.
We conclude with the following conjecture: let M
be a semiprime p-ring with suitable torsion restrictions

and 0 be an endomorphism of M. Suppose there exists
an additive mapping T:M —M such that

T((xa@)™ (xB)"x) = O(xex)"T (x)0(Bx)" holds for all
xeM,a,Bel’, where m>1n=>1 are some integers.
Thus T is a 6-centralizer.

CONCLUSION

In this study, we have given some examples which
have shown that 0-centralizer exists in I'-rings. We
proved that if T is an additive mapping on a 2-torsion
free semiprime I'-ring M satisfying the assumption (A)
such that T (XaypXx)=0(x)aT (y)pe(x) for all
X,yeM,a, B el and 6 an endomorphism on M,then

T is a 6-centralizer. We have also showed that T is a 6-
centralizer if M contains a multiplicative identity 1.
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