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Abstract: In order to explore the essence of structural controllability, structural controllability of inverted pendulum 
is analyzed in this presented study and a sufficient controllability condition of a class of perturbed linear system is 
obtained, which is essential to prove the structural controllability for the perturbed inverted pendulum. Two different 
structured models of inverted pendulum are constructed. Structural controllability of both cases are discussed and 
compared, which shows that the usual model used in controller design for inverted pendulum is just a special case of 
normal model for inverted pendulum. 
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INTRODUCTION 

 
Here consider a linear time-invariant system 

denoted by differential equation: 
 

BuAxx +=&                                (1) 

 
where, we denote by x∈R

n
, u∈R

m
, A∈R

n×n
, B∈R

n×m
 the 

system states, system inputs, coefficient matrix and 
input matrix, respectively. Define its controllability 
matrix by Qc = [B, AB, …, A

n-1
B] and a composite 

matrix by Q (s) = [sI - A, B]. It is clearly that system 
(1) is completely controllable if and only if rank (Qc) = 
n, which is equivalent to that for all s∈C (C is the 
complex number field), rank (Q (s)) = n. Generally, 
controllability is a generic property (Lee and Markus, 
1967), that is, if we denote all the controllable system a 
set by Y, then Y is a open and dense set. 

In traditional systematic theory, the mathematic 
model (1) is described exactly, that is, all the elements 
of coefficient matrix and input matrix are accurately 
numerical numbers. However, from the view point of 
engineering, it is difficult to get such a accurate model, 
which is to say that there may exist uncertainty in 
elements of A and B. most of these uncertainties are 
resulted from the uncertainties of system variables. If 
we include these system variables in physical model, 
then it turns out to be a system model with variables, 
which we can say structural model. 

The inverted pendulum is a multi-parameter system 
and most research on it is control strategy. Variable 
structure method is used to control the inverted 
pendulum,  in   which  the sliding mold control law was  

obtained by Lyapunov method (Ma and Lu, 2009). An 

anther Lyapunov based control method was proposed to 

control the inverted pendulum (Ibanez et al., 2005). 

Other method such that the passive fault tolerant 

method was used to control a double inverted pendulum 

(Niemann and Stoustrup, 2005). On the other hand, the 

rod optimal selection problem in multi-link inverted 

pendulum was researched (Bei-Chen and Shuang, 

2006). By using the controllability matrix Qc which is 

obtained by different rods combination, the smallest 

Eigen values of different controllability matrices Qc 
are 

calculated. Then the system which is corresponding to 

the smallest Eigen value is considered to be the optimal 

choice. In that study, the problem that rod is considered 

to be system variable is concerned, nevertheless, the 

calculation is still a process over the real number field. 

From the view point of structural model, it is worth 

researching whether the system variables affect the 

system property (such as controllability). 

In this study structural controllability of inverted 
pendulum is analyzed. Two structural models of 
inverted pendulum are constructed. For a class of 
perturbed linear system a sufficient condition of 
controllability is presented, which is a basement for 
analyzing structural controllability of the second type of 
structural model. Also this study gives a research that 
whether system variables affect the controllability of 
inverted pendulum from the view of structural model 
point, that is, structural controllability. In order to 
explore the essence of structural controllability, in this 
study we just consider the linearized inverted pendulum 
model.  
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SOME DEFINITIONS AND  

TWO INTERMEDIATE CONCLUSION 

 

For linear time-invariant system (1), an important 

conception is controllability, that is, whether we can 

find some suitable inputs u such that for any given 

initial state x0 it can be steered to any desired 

destination state. With the linear time-invariant 

systems, there exist some definitions about 

controllability as follow: 

 

Definition 1: For linear time-invariant system (1) if 

there exist some admissible control u (t) (with the 

constrain: 

  

0

2
( )

at

t
u t dt < ∞∫ )  

 

during the time interval (t0, ta) and transfer the initial 

state x (t0) ≠ 0 to x (ta) = 0, then state x (t) is said to be 

controllable over the interval (t0, ta), or controllable at 

time ta. 

 

Definition 2: If any state of linear time-invariant 

system (1) is controllable over the time interval (t0, ta), 

then the system (1) is said to be completely 

controllable. 

Here we consider a class of linear time-invariant 

system (1) with perturbation denoted by: 

  

x Ax Bu P= + +&                              (2) 

 

where, we denote by x∈R
n
, u∈R

m
, A∈R

n×n
, B∈R

n×m

 and 

P∈R
n
 the system states, system inputs, coefficient 

matrix, input matrix and constant perturbation 

respectively.  

Now define a symmetric matrix: 

 

0

( ) ( )

0( , ) ( ) ( )
Ta

a a
t

A t A tT

C a
t

W t t e B B e d
τ ττ τ τ− −= ∫           (3) 

 

For system (1) symmetric matrix WC (t0, ta) is said 

to be the controllability Gramian matrix. Similarly, for 

system (2) we can also define its symmetric 

controllability Gramian matrix denoted by �� C (t0, ta) 

which differ from that of system (1). 

For system (2), here gives a conclusion about its 

controllability. 

 

Theorem 1: Linear time-invariant system (2) is 

controllable if its controllability Gramian matrix �� C (t0, 

ta) is nonsingular.  

 

Proof: Because �� C (t0, ta) is nonsingular, then ���
�� (t0, 

ta) exists. Suppose the system input is with the form as 

follow: 

1

0 0( , )(( ))
T

C a

T A t
u t B t t xe W P

−−= − −  

 

where, (x0 - P) is the initial state at time t0. Then the 

solution x (ta) of linear time-invariant system (2) at time 

ta can be denoted to: 

  

0

( )

0( ) ( ) ( )
a

a a
t

At A t t

a
t

x t e x P e Bu t dt
−= − − ∫

 
 

0

( )

0

1

0 0, )() (( )
Ta

a a
t

At A t t T A

C

t

t
aW te x P e B e tB x dtP

− −− −= − − ∫
 

 

0

1

00 0( ,( )() )
Ta

a a
t

At At At T A t

t
C aWe x P e e BB dt t x Pe t

− −−= − − −∫
 

 

0

1

0 0 0( , )( ( , )() )a a

C a C

A

a

At t
W t t We x P e t t x P−− − −=

 
 

0 0( ) 0( )a aAt At
e x P e x P= −− =−  

 

By the Definition 1, linear time-invariant system 

(2) is controllable. 

 

Lemma 1: For linear time-invariant system (1), the 

non-singularity of controllability Gramian matrix WC 

(t0, ta) is equivalent to that rank (Qc) = n. 

Then for system (2), we define a matrix denoted by 

�	c, which is also said to be the controllability matrix. 

Another conclusion about controllability of system (2) 

is immediate. 

 

Theorem 2: Linear time-invariant system (2) is 

controllable if its controllability matrix �	c 
is of full 

rank, that is, rank (�	c) = n. 

 

Proof: By the Theorem 1 and Lemma 1, the proof is 

immediate. 

 

SOME NOTATIONS OF STRUCTURAL 

CONTROLLABILITY 

 

In classical control theory, the elements of matrices 

A and B are considered to be accurate exactly, but for 

some physical reasons some of these elements are 

approximate numerical numbers. So sometimes the 

variables are preserved in system mathematic model. 

The model with variables is considered to be more 

reasonable and only the known zeros are decided to be 

accurate.  

The conception of structural controllability is 

presented first (Lin, 1974). During the analysis of 

structural controllability only the structure of matrices 

A and B is concerned, which means that the objective 

researched is not the numerically known matrices A and 

B, but the corresponding same dimension structured 

matrices denoted by 
̅ and �	 , respectively.  
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Definition 3: The element of structured matrix 
� is 

ether zero or undetermined value differing from any 

other undetermined element. If all the elements of 

structured matrix 
� are concrete numerical numbers, 

then it is considered to be a admissible numerical 

realization. If the numerical matrices M and N are both 

the admissible numerical realization of structured 

matrix 
�, then they are structurally equivalent.  

Other structured matrices are proposed by 

researchers (Anderson and Clements, 1981; Yamada 

and Luenberger, 1985; Murota, 1999) after Lin’s 

structural matrix. However, there exists a problem that 

the inverse matrix of these structured matrices is no 

longer to be their corresponding structured matrix. 

Calculating inverse matrix is frequent during exploring 

the properties of system (1) and (2), so all these 

structured matrices are not fitted.  

Then a class of more general structured matrix was 

proposed, which is call rational functions matrix with 

Multi-Parameter (RFM) (Lu and Wei, 1991, 1994).  

Let ��� (��,…,��)∈�� 
 
 be the parameter vector in 

system (1) or (2). R
q
 is called the definition domain of r 

or parameter space. Let F (r) denote the field of all 

rational functions with real coefficients in q parameters 

r1, …, rq. F (r) [λ] denote the polynomial ring in λ with 

coefficients in members over F (r).  

 

Definition 4: If each member of matrix M is a member 

over F (r), then the matrix M is said to be a rational 

matrix or a matrix over F (r). If all the matrices of 

systems are consider to be RFM, then the systems is 

said to be a rational function systems with multi-

parameters r or a systems over F (r). 

The most advantage of RFM over other structured 

matrices is that the inverse matrix of RFM is still RFM, 

which is more convenient in analyzing system 

properties. The structured matrix used in this presented 

study is RFM defined with Definition 4. 

Now we can define the mathematic model of linear 

time-invariant system over F (r): 

 

( ) ( )x A r x B r u= +&                           (4) 

 

or linear time-invariant system with constant 

perturbation over F (r): 

 

( ) ( )x A r x B r u P= + +&                              (5) 

 

where, r denotes the parameter vector in systems (4) 

and (5). 

 

Theorem 3: Linear time-invariant system with constant 

perturbation (5) is structural controllable if its 

controllability matrix �	c (r) 
is of full rank, that is, rank 

(�	c (r)) = n. 

 
 
Fig. 1: One stage inverted pendulum system 

 

Proof: By Theorem 2 and Definition 4, the proof is 

immediate. 

 

STRUCTURAL CONTROLLABILITY 

ANALYSES FOR INVERTED PENDULUM 
 

The inverted pendulum now is considered to be a 

normal system, so here we just give the simple 

illustration figure shown by Fig. 1, if any doubt may 

refer to Shen et al. (2003). In order to exploring the 

structural properties here the one stage linearized 

inverted pendulum is concerned. In this section two 

different linearized cases are considered as follow: 

 

Linearization at up-vertical equilibrium point: This 

is the usual case studied. The dynamic behavior of one 

stage inverted pendulum is described by 4 states, that is, 

position of car, velocity of car, angular of rod and 

velocity of rod angular, denoted by z, ��, � and ��
  

respectively.  

In order to determine the mathematic model 

governing this system, we first concern the horizontal 

position z of the car, meanwhile the position of the 

pendulum is z+lsin �. Then by Newton’s second law, 

that is, mass×acceleration = force, in the horizontal 

direction yields: 

 

u
dt

lzd
m

dt

zd
M =

+
+

2

2

2

2 )sin( θ                         (6) 

  

Again applying the Newton’s second law to 

pendulum mass, in the up-vertical direction to the rod, 

we can get: 

 

θθθ &&&&&& sincos mgmlzm =+                          (7)  

 

where, notation g is the acceleration of gravity in the 

downward direction. 

The differential Eq. (6) and (7) are nonlinear, we 

need a further simplification. 

Now let � (�) =  �� +  ∆ � (�), where �� is the 

equilibrium point, which we call it the static operating 

point. �� is a constant, ∆ � (�) is the deviation that 
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departs from ��. When �� = 0 and � (�) = ∆ � (�) is 

not large, we can get its linearized mathematic model 

described by state space form: 

 

UrBXrAX )()( +=&                        (8) 

 

where,  

 

0 1 0 0

0 0 0

( )
0 0 0 1

( )
0 0 0

mg

M
A r

M m g

Ml

 
 − 
 =  
 

+ 
  

0

1

( )
0

1

M
B r

Ml

 
 
 
 =  
 
 −  

 



















=

θ
θ
&

&z

z

X  

 

Let parameter r = (M, m, l, g) ∈R
4
, then the 

controllability matrix QC (r) is:  

 

2

2
2 3

2

2

1
0 0

1
0 0

( )
1 ( )

0 0

1 ( )
0 0

c

mg

M M l

mg

M M l
Q r B AB A B A B

M m g

Ml M l

M m g

Ml M l

 
 
 
 
 

 = =    − + −
 
 − + −
 

 

 

Since determinant of QC (r) is: 

  

( )
2

2

2 2

g
M m l m

M l
+ −    

 
and when (M + m) l = m, Qc (r) has full rank and the 
system is completely controllable. It is known that 
relation (M + m) l = m

 
is an algebraic variety. Let set S 

be S = {r|"#�$Qc (r) = 0}, then the Lebesgue 
measurement of inverted pendulum (8) being 
nonstructural controllable is zero, which means that 
inverted pendulum (8) is structural controllable. 
 
Linearization at any up operating point: What we 

have discussed in the above subsection is the usual 

linerized case, under which condition that the static 

operating point is �� = 0. Now we will discuss large 

range that the angular �� takes value from the interval 

[-60°, 60°]. If we do this, then we are sure that 

“dynamic model described by differential Eq. (6) and 

(7) is controllable at the operating point �� = 0” is 

exactly reliable when |� (�)| ≤60°. 

Because the equilibrium point �� ≠ 0, now we 

apply � (�) =  �� +  ∆ � (�), where ∆ � (�) is a small 

perturbation, which is close to zero. According to the 

fact that cos∆� ≈ 1 and sin∆� ≈ ∆�, then applying 

these to the trigonometric expansions, we have: 

  

θθθθθθθθ ∆∆+∆=∆+= 0000 sincoscossin)sin(sin   

θθ cossin 0 +≈                                                         (9) 

 

0000 sinsincoscos)cos(cos θθθθθθθ ∆−∆=∆+=   

 

θθθθ cossincos 00 ≈∆−≈                                   (10) 

 
The effectiveness of Eq. (10) depends on the 

assumption that |��| ≤ 60° +," ∆� ≤ 0.1 because of 

sin ��∆� ≪ /01��. According to Eq. (9), we have: 
 

θθ
θ &∆= 0cos

sin

dt

d
                                 (11) 

 

θθ
θ &&∆= 0

2

cos
sin

dt

d
                       (12) 

 
Substituting  the  Equalities  (11)  and  (12) into 

Eq. (6), we can have an approximate differential 
equation for the inverted pendulum system: 
  

umlzmM =∆++ θθ &&&& 0cos)(                               (13)  

 

Again applying the same method to Eq. (7), we 

have: 

 

000 sincoscos θθθθθ gglz =∆−+ &&&&                  (14) 

 
Because of: 
 

θ
θθ

θ &&&& ∆=
∆+

=
2

0
2

)(

dt

d

 
 

Equation (14) takes the form: 

 

000 sincoscos θθθθθ gglz =∆−∆+ &&&&                (15)  

 
According to Eq. (13) and (14), we have:  
 

u
lmmMlmmM

gmM

)cos(

cos

)cos(

cos)(

0
2

0

0
2

0

θ

θ
θ

θ

θ
θ

−+
−∆

−+

+
=∆ &&

 
 

lmmM

gmM

)cos(

sin)(

0

2

0

θ
θ

−+

+
+  

 

θθ
θ

∆
−+

+
= 0

0

2
cos(

)cos(
g

lmmM

mM
)

cos
sin 0

0 u
mM

g
+

−+
θ

θ (16)  

 

θ
θ

θ
∆

−+

−
=

0
2

0
2

cos

cos

mmM

mg
z&&

0

2

00

0

2 cos

sincos

cos

1

θ
θθ

θ mmM

mg
u

mmM −+
−

−+
+

 
 

θ
θ

θ
∆

−+

−
=

0

2

0

2

cos

cos

mmM

mg

0

2

00

0

2 cos

sincos

cos

1

θ
θθ

θ mmM

mg
u

mmM −+
−

−+
+  

(17) 
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Now we denote the state vector to being with the form: 

 

[ ]TzzX θθ && ∆∆=  

 

Then we may write Eq. (14) and (17) in state space 

form: 

 



















∆

∆























−+

+

−+

−

=



















∆

∆
=

θ
θ

θ

θ

θ

θ

θ
θ

&&

&

&&

&

&&

&

&
z

z

lmmM

gmM

mmM

mg

z

z

X

0
)cos(

cos)(
00

1000

0
cos

cos
00

0010

0
2

0

0
2

0
2

 

 

+

0 0

2 2

0 0

0 0

2 2

0 0

00

cos sin1

cos cos

0 0

cos ( ) sin

( cos ) ( cos )

mg

M m m M m m
u

M m g

M m m l M m m l

θ θ
θ θ

θ θ
θ θ

  
   −  
  + − + −

+   
  
  − +
  

+ − + −        

(18)  

 

Here we consider the case in subsection A that 

�� = 0 and substitute it into Eq. (18). Then it turns out 

Eq. (6), which means that Eq. (18) is reliable. 

Supposing that ∆� = 0, ∆�� = 0, ∆�2 = 0 i.e., this 

inverted pendulum runs at the static point � = ��. Then 

by Eq. (16) we can get that: 

 

0

0

0

0 )(
cos

sin)(
θ

θ
θ

gtgmM
gmM

u +=
+

=              (19) 

 

Substituting Eq. (19) into (17) yields: 

  









−

+

−+
= 00

0

0

0
2

sincos
cos

sin)(

cos

1
θθ

θ
θ

θ
mg

gmM

mmM
z&&   

0θgtg=                                                               (20)  

 

It is clearly that (M + m) �2 = (M + m) gtg �� =  3�, 

which is in fact the Newton’s second law. 

Let u = u0 + ∆u where u0 = (M + m) gtg��, then by 

substituting them into Eq. (17) we have: 

 

θ
θ

θ
∆

−+

−
=

0
2

0
2

cos

cos

mmM

mg
z&&  

 

[ ]0 0 0

2

0

( ) cos sin

cos

M m gtg u mg

M m m

θ θ θ

θ

+ + ∆ −
+

+ −
 

 

= θ
θ

θ
∆

−+

−

0
2

0
2

cos

cos

mmM

mg +
0

0
2cos

1
zu

mmM
&&+∆

−+ θ
(21)  

 

where 00 θgtgz =&& . 

Then by substituting u = u0 + ∆u and u0 = (M + m) 

gtg �� into Eq. (16) we get: 

  

θ
θ
θ

θ ∆
−+

+
=∆

lmmM

gmM

)cos(

cos)(

0
2

0&&  

 

0

2

0

cos

( cos )
u

M m m l

θ
θ

− ∆
+ −

                          (22) 

  

According to Eq. (21) and (22) we can get another 

state space form with the form as follow:  

 



















∆

∆























−+

+

−+

−

=



















∆

∆
=

θ
θ

θ

θ

θ

θ

θ
θ

&&

&

&&

&

&&

&

&
z

z

lmmM

gmM

mmM

mg

z

z

X

0
)cos(

cos)(
00

1000

0
cos

cos
00

0010

0
2

0

0
2

0
2

 
 



















+∆























−+

−

−+
+

0

0

0

)cos(

cos
0

cos

1
0

0

0
2

0

0
2 z

u

lmmM

mmM &&

θ
θ

θ                        (23)  

 
It is clearly that above system (23) is the same 

form of system (5). Now let us test the rank of its 

controllability matrix �	c (r). First let parameter vector r 

be (M, m, l, g, ��). Then for calculating easily, we let N 

denote (M + m - m cos
2
 ��), then we get the 

controllability matrix �	c (r) with the form: 

 
2

0 0

2

2

0 0

2

2

0 0 0

2

2

0 0 0

2

cos cos1
0 0

cos cos1
0 0

( )
cos ( ) cos cos

0 0

cos ( ) cos cos
0 0

c

mg

N N l

mg

N N l
Q r

M m g

Nl N l

M m g

Nl N l

θ θ

θ θ

θ θ θ

θ θ θ

 
 
 
 
 
 =
 − − +
 
 
 − − +
 
 

 

 

It is clear that rank �	c (r) = 4, which means that by 

Theorem 3 system (23) is structural controllable. 

 

CONCLUSION 

 

From the structural model of view point, the 

structural controllability of linearized one-stage 

inverted pendulum is analyzed in this presented study. 

For the two cases that linearization at up-vertical 

equilibrium point and linearization at any up operating 

point, structural controllability of the two cases are 

discussed, which proves that the former case is the 

special form of later case. The linear structural model 

obtained in the second case is not the standard linear 

structural model (4), but it is a standard linear structural 

model with constant perturbation. So the controllability 
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condition of structural model (5) is explored. However, 

the condition obtained in this presented study is only a 

sufficient condition, so exploring the necessary 

condition is the future work. 
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