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Heat Transfer in the Formation 
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Abstract: Heat loss from the wellbore fluid depends on the temperature distribution in the formation; since it is 
necessary to know the formation temperature distribution as a function of radial distance and time for computing the 
fluid flow temperature in the wellbore. This study solves energy balance equation in the formation by analytical and 
numerical solutions. Comparison of analytical and numerical solutions results figured out good agreement between 
those solutions, except early times. This study further showed the temperature changes in small area, only near the 
wellbore in the formation. 
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distribution, wellbore 

 
INTRODUCTION 

 
Injection and production wells have been used in 

several industries, especially petroleum and geothermal 
industries for many decades (Hasan and Kabir, 2002). 
An appropriate wellbore completion design requires a 
knowledge temperature profile along the depth of the 
well, especially during hot fluid flow in the wellbore 
(e.g., steam injection) (Paterson et al., 2008). 

The formation is the part that surrounds the 
wellbore system and acts as a heat source or sinks for 
the wellbore. The temperature difference between the 
wellbore fluid and the formation causes a transfer of 
heat between the fluid and the surrounding earth and 
the amount of heat transfer from/to the wellbore fluid 
depends on the temperature distribution in the 
formation around the well, since it is necessary to know 
the formation temperature distribution as a function of 
radial distance and time for computing the fluid flow 
temperature in the wellbore (Ramey, 1962; Hasan and 
Kabir, 1991, 2002). This study is going to investigate 
heat transfer in the formation as a function of radial 
distance and time by using analytical and numerical 
solutions to find application criteria for using each 
solution. 
 
Heat transfer in the formation: An energy balance 
equation on shown element in Fig. 1 during a small 
time interval, ∆t, can expressed as (Kreith and Bown, 
2000): 

Rate of heat transfer at (r) -Rate of heat transfer at 
(r+∆r)+Rate of heat generation inside the element = 
Rate of change of the energy content with in the 
element  
Or 

 
E

elementQ Q Q
r r r gen t

∆
− + =

+ ∆ ∆
                                (1) 

 
 

Fig. 1: Schematic representation of the system under study 

 
Rate of heat generation inside the element is zero 

for shown system in Fig. 1(Farouq Ali, 1981). Rate of 
change of the energy content within the element can 
expressed as (Kreith and Bown, 2000): 
 

( ) ( )t t t e t t t e e t t tE E mC T T AC r T Tρ+∆ +∆ +∆− = − = ∆ −      (2) 

 
where, 
 

2 ( )
2

r
A l rπ

∆
= +                                                        (3) 

 

The conduction mechanism plays the main role in 

heat transfer in the formation around the wellbore 
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compared to heat transfer by conduction mechanism 

(Paterson et al., 2008; Hasan and Kabir, 1991; Ramey, 

1962; Hagoort, 2004). For a symmetrical cylinder, heat 

diffusion in a three-dimensional may be mathematically 

treated as a two-dimensional, as in the case of the 

petroleum wellbore shown in Fig. 1. In addition, if a 

small increment in the vertical direction of the well is 

considered, the problem simplifies to one-dimensional 

heat diffusion because the vertical heat-transfer in the 

formation can be neglected due to small vertical 

temperature gradient (Hasan and Kabir, 1991; Paterson 

et al., 2008). In consideration of Fourier's law (Willhite, 

1967): 

  

2 ( ) |r e r

dT
Q rlk

dr
π=                                                 (4) 

 

and, 

2 ( ) ( ) |r r e r r

dT
Q r r lk

dr
π+∆ +∆= + ∆                                  (5) 

 

By substituting (2)-(5) in (1) and rearranging it: 

 

( )2 ( )
22 | 2 ( ) ( ) |

e e t t t

e r e r r

r
r lC r T T

dT dT
rlk r r lk

dr dr t

πρ
π π

+∆

+∆

∆
+ ∆ −

  − + ∆ =  ∆ 

     

                                                                                     (6) 

 

By rearranging (6): 

 

 

( )| ( ) ( ) | ( )
2

dT dT rr r r l r C T Tr r rdr dr e e t t t

r k t
e

ρ
  ∆− + ∆ + −  + ∆ + ∆  =

∆ ∆

   (7) 

 

Taking the limit as  ∆r → 0 and ∆t → 0  yields: 

 

1 1
  e e

dT dTd
r

r dr dr dtα
   =  

  

                                           (8) 

 

where, 

 

 e

e e

k

c
α

ρ
=                                                              (9) 

 

Three conditions are needed for the solution (8). 

Initial formation temperature is known; in this study it 

is assumed that at t = 0, the formation temperature 

profile is linear based on the local geothermal gradient.  

 

0 :  
e

t T T= =                                                        (10) 

 

It is also assumed that at the outer boundary of the 

formation, temperature does not change (Hasan and 

Kabir, 2002; Hagoort, 2004; Hasan and Kabir, 1994). 

 

lim  
e

r
T T

→∞
=                                                             (11) 

 

In addition, Fourier's law of heat conduction is 

used at the wellbore/formation interface, since heat 

transfer rate is (Hasan and Kabir, 2002; Hagoort, 2004; 

Hasan and Kabir,1994): 

 

2  |
w

e
e r r

rdT
Q lk

dr
π ==                                              (12) 

 

Through literature, several investigators have 

presented analytical and numerical solutions for solving 

(8) to find the heat transfer rate at the 

wellbore/formation interface. 

 

ANALYTICAL SOLUTION 

 

The solution of (8) is analogous to that used for 

pressure diffusion defined by Everdingen Van and 

Hurst (1949). Using the Laplace transformation, we can 

present an equation for the temperature distribution as a 

function of distance and time. The general solution is a 

combination of Bessel functions (Ramey, 1962). Some 

researchers have tried to find the correlation that best 

fits the rigorous solution due to complicated application 

of Bessel functions. The most commonly used 

correlations in literature were developed by Ramey Jr 

(1962) and Hasan and Kabir (1991). 

Ramey Jr (1962) used a line source solution to 

transient heat conduction in 1D cylinder proposed by 

Carslaw and Jaeger (1950); which the 

wellbore/formation interface temperature becomes log-

linear with time at large times (Ramey, 1962; Hasan 

and Kabir, 1991): 

 

( ) ln 0.290 
2

w
r

f t
tα

 
= − − 

 

                                   (13) 

 

And the heat transfer rate at the wellbore/formation 

interface: 

 

2 ( )

( )

e cemo ek T T
Q l

f t

π −
= ∆                                       (14) 

 

Hasan and Kabir (1991), stated that Ramey Jr 

(1962) model outcomes in errors at early times. They 

considered the wellbore diameter in their solution and 

solved the resulting (8) with the Laplace transform, 

following the approach suggested by Everdingen Van 

and Hurst (1949) for a similar set of equations used for 

pressure transients. They found the following algebraic 

expressions for dimensionless temperature, TD, in terms 

of dimensionless time, tD, to represent the solutions 

quite accurately: 
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 1.5: 1.1281  (1 0.3 ) D D D DIf t T t t≤ = −                    (15) 

 

( ) 0.6
 1.5 : 0.4063 0.5 ( )(1 )

D D D

D

If t T ln t
t

> = + +
     

   (16) 

where, 

2
 e

D

e e w

k t
t

C rρ
=                                                        (17) 

 
And the heat transfer rate at the wellbore/formation 

interface: 
 

2 ( )
e cemo e

D

k T T
Q l

T

π −
= ∆                                           (18) 

 

NUMERICAL SOLUTION 
 

In this part of the study (8) is solved by numerical 
method due to analytical solution cannot model 
heterogeneous layers, variable heat transfer and shut in 
through injection or production processes (e.g., cyclic 
injection processes). Some investigators stated the 
numerical solution as an accurate solution if there is 
selected suitable timestep and grid size (Farouq Ali, 
1981; Cronshaw and John, 1982). 

To solve problems that involve (8), the finite 
difference method can be used. The system is 
discretized to N cells as shown in Fig. 2. By implicit 
definite difference, approximations for dT/dt, dT/dt, 
and  1/r (d/dr(rdT/dr)) are: 

 
1n n

i iT TdT

dt t

+ −
≅

∆
                                                    (19) 

 
1 1

1

n n

i iT TdT

dr r

+ +
+ −

≅
∆

                                                  (20) 

 

And 
1 1 1 1

1 1
1 11 1

2 22 2

| |
1

n n n n

i i i i

i ii i

i i

T T T TdT dT
r rr r

r rdr drd dT
r

r dr dr r r r r

+ + + +
+ −

+ −+ −

   − −
−−    ∆ ∆      ≅ =   ∆ ∆  

       (21)                 

 

With those notations, the implicit definite 
difference approximations form of (8) is: 
 

1 1 1 1

1 1
1 11

2 2  

n n n n

i i i i

n n i i
i i

i

T T T T
r r

r rT T

t r rα

+ + + +
+ −

+ + −

   − −
−   ∆ ∆−    =

∆ ∆
         (22) 

 

Equation (22) is the basic finite difference equation 
for the one dimensional diffusivity equation. It is solved 
for all the new temperature, T

n+1
, simultaneously. Once 

these new temperatures are solved, they become old 
temperatures for the next timestep. In this manner, 
solutions to (22) are solved in a timestep sequence for 
as many timesteps as required. 

By applying boundary conditions in (22), it can be 
modified for every cell in Fig. 2 as expressed in the 
following: 

 
 
Fig. 2: A schematic of discretized  formation (top view) 

 
For cell = 1: 
 

1 11 1
1 1 2 2

1

| |

 
n n

dT dT
r r

dr drT T

t r rα

+ +
−

−
=

∆ ∆
                                    (23) 

 
The heat transfer at wellbore/formation interface is 

expressed by Fourier's law (Kabir and Hasan, 1991): 
 

1 1

2 2

2 | 
dT

Q r lk
dr

π= −                                                 (24) 

 
By rearranging (24): 
 

1

12

2

| 
2

dT Q

dr r lkπ
−

=
                                                     (25) 

 
By substituting (25) in (23): 
 

1 1

2 1
11 1
21 1

1

2

n n

n n

T T Q
r

r lkT T

t r r

π
α

+ +

+ +

 −
+ ∆−  =

∆ ∆
                           (26) 

 
After rearranging (26): 
 

1 1

1 1 1 2 12 2
1 1

1 1 12 2

1
2

n n nt t tQ
r T r T T

r r r r r rlk

α α α
π

+ +

+ +

   ∆ ∆ ∆
+ − = +   

∆ ∆ ∆       

(27) 

 
For cells = 2 to N-1: 
 

1 1 1 1

1 1
1 11

2 2

n n n n

i i i i

n n i i
i i

i

T T T T
r r

r rT T

t r rα

+ + + +
+ −

+ + −

   − −
−   ∆ ∆−    =

∆ ∆
    (28) 

 
After rearranging (28): 
 

1 1 1

1 1 1 1 1 12 2 2

2 2 2 2

1 ( )n n n n

i i i i
i i i i

i i i

t t t
r T r r T r T T

r r r r r r

α α α+ + +
− +

− + − +

     ∆ ∆ ∆
− + + + − =     

∆ ∆ ∆     

   

                                                                                   (29) 
 
For cell = N: 
 

1 1 1 1

1 1
1 11

2 2  

n n n n

N N N N

n n N N
N N

N

T T T T
r r

r rT T

t r rα

+ + + +
+ −

+ + −

   − −
−   ∆ ∆−    =

∆ ∆
             (30) 
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By considering the diameter of the outer boundary 
of the formation to be large, it can be assumed that, 
temperature does not change there: 
 

1 1

1 1 1 1 12 2 2

2 2 2 2

1 (2 ) 2n n n

N N N e
N N N N

N N N

t t t
r T r r T T r T

r r r r r r

α α α+ +
−

− + − +

     ∆ ∆ ∆
− + + + = +     

∆ ∆ ∆     

   

                                                                                   (31) 
 

This set of Eq. (27), (29) and (31) can be 
represented by a matrix equation which can simply be 
written as: 

 

AT d=
rr

 (32) 
 

where, 
A  = Coefficient matrix 

T
r

and d
r

 = Column vectors 

 
Graphically, the matrix may be presented as: 
 

1 1 1 1

2 2 2 2 2

3 3 3 3 3

2 2 2 2 2

1 1 1 1 1

N N N N N

N N N N N

N N N N

b c T d

a b c T d

a b c T d

a b c T d

a b c T d

a b T d

− − − − −

− − − − −

     
     
     
     
     

=     
     
     
     
     
     

O O O M M

          (33) 

 
The rows of the matrix represent equations and the 

columns represent unknowns. Equation (33) shows only 
the nonzero elements of the matrix. Notice that the non-
zero elements follow a diagonal trend, lying in three 
adjacent diagonals. This is called a tridiagonal matrix. 
The values of a, b, c and d are: 
 

1 1 2
1

12

1
t

b r
r r

α
+

∆
= +

∆
                                                 (34) 

 

1 1 2
1

12

t
c r

r r

α
+

∆
= −

∆
                                                    (35) 

 

1 1

12

n tQ
d T

r rlk

α
π
∆

= +
∆

                                               (36) 

 
For i = 2 to N-1: 
 

1 2

2

i
i

i

t
a r

r r

α
−

∆
= −

∆
                                                     (37) 

 

1 1 2

2 2

1 ( )i
i i

i

t
b r r

r r

α
+ −

∆
= + +

∆
                                        (38) 

 

1 2

2

i
i

i

t
c r

r r

α
+

∆
= −

∆
                                                   (39) 

 
n

i id T=                                                               (40) 

and, 

1 2

2

N
N

N

t
a r

r r

α
−

∆
= −

∆
                                               (41) 

 

1 1 2

2 2

1 (2 )N
N N

N

t
b r r

r r

α
+ −

∆
= + +

∆
                                  (42) 

 

1 2

2

2
n

N N e
N

N

t
d T r T

r r

α
+

 ∆
= +  

∆ 
                                 (43) 

 

The tridiagonal matrix has a very efficient solution 

procedure called the Thomas algorithm (Kreith and 

Bown, 2000), since it is used to solve (33). 

 

COMPARISON 

 

To compare empirical and numerical solutions, 

temperature profiles versus injection time were 

computed using Ramey Jr (1962) and Hasan and Kabir 

(1991) and numerical solutions for a case of hot water 

injection at a surface temperature of 171.11 ºC into a 

304.8 m vertical wellbore at a rate of 0.0088 m
3
/s 

through 0.1629696 m casing diameter with overall heat 

transfer coefficient of 17.034 W/m
2
/K. The 

temperatures at the wellbore/formation interface and 

bottom hole predicted by the models have been 

presented in Fig. 3 and 4 respectively. There is the good 

agreement between these solutions, except at early 

times. It was found that there are mismatchs in the time 

early because Ramey Jr (1962) and Hasan and Kabir 

(1991) solutions have been developed based on 

constant heat transfer rate between the wellbore and 

formation. However, heat flow between the wellbore 

and formation will decrease with time, especially at the 

initial stages of injection whereby the temperature 

difference between the fluid and the earth is quite large. 

Ramey Jr (1962) assumed the radius of the wellbore is 

negligible and the temperature becomes log-linear with 

time at large times at the wellbore/formation interface; 

due to it, errors for Ramey Jr (1962) model are larger 

than Hasan and Kabir (1991) model in early times as 

shown in Fig. 3 and 4. 

Figure 5 presents the temperature distribution in 

the formation. It can be figured out that assuming 

unsteady state heat transfer in the formation and the 

constant temperature versus time at outer boundary of 

formation are correct. 

Further it, Fig. 5 shows the formation temperature 

changes in small area, only near the wellbore, since it is 

reasonable to consider 20 (m) or a smaller value for the 

outer boundary radius of the formation to conduct faster 

numerical computations. Setting a suitable outer 

boundary radius of the formation is necessary in 

software      packages      programmed     on    basis    of  
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Fig. 3: The temperature at the wellbore/formation interface 

versus injection time  

 

 

 

 

 

 

 

 

 
 

 

 

 

 
Fig. 4: The fluid flow bottomhole temperature versus 

injection time 

 

 

 

 

 

 
 

 

 

 

 

 
 

 
Fig. 5: The temperature distribution in the formation 
 

Computational Fluid Dynamic (CFD) solutions to 

reduce CPU running time. 

Figure 6 illustrates CPU running times for the 

models. It can be observed that the CPU running times 

for Ramey Jr (1962) and Hasan and Kabir (1991) 

models are much shorter than the numerical model, 

especially in long times because Ramey Jr (1962) and 

Hasan and Kabir (1994) assumed that the constant heat 

transfer rate for each time step and the calculations of 

each time step is independent of the last timestep 

calculations. However the heat transfer rate is 

considered variable in  

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 6: CPU running time versus injection time   

 

the numerical solution and the calculations of each time 

step is dependent on the last time step calculations.  

Supposedly the numerical solution should be used 

in the early injection times or when there is a shut in 

through injection process (e.g., cyclic injection 

processes). It is more appropriate to use Hasan and 

Kabir (1991) model for predicting the temperature 

profile in the long times because it is enough accurate 

and its speed is faster than the numerical solution as 

shown in Fig. 3 and 6 respectively. 

 

CONCLUSION 

 

The main conclusions from the present study can 

be summarised as follows: 

 

• Heat transfer occurs in unsteady state in the 

formation. 

• For modelling heat transfer in the formation, it is 

recommended to use the numerical solution in the 

early injection times or when there is a shut in 

through injection process (e.g., cyclic injection 

processes) and it had better use Hasan and Kabir 

(1991) model in the long times because its 

accuracy is acceptable for petroleum engineering 

studies and its speed is much faster than the 

numerical solution. 

• The change in the formation temperature is limited 

to small area, only near the wellbore; thereby it is 

reasonable to consider 25 (m) or smaller value for 

the outer boundary radius of the formation to 

conduct faster CFD and numerical computations. 

 

NOMENCLATURE 

 

A = Coefficient matrix 

CFD  = Computational fluid thermodynamic 

Ce = Heat capacity of the earth (J/(kg/°C))  

Et = Energy content within the element at time t 

(W) 

Et+∆t = Energy content within the element at time 

t+∆t (W) 
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f(t) = Dimensionless temperature defined by 
Ramey Jr (1962) 

i  =  Number of element in the radius direction  
ke =  Thermal conductivity of earth (W/(m/°C))  
l  =  Length (m) 
m  =  Mass (kg) 
n  =  Number of time step 
Qgen = Rate of heat generation inside the element 

(W) 
Qr =  Rate of heat transfer at r (W) 
Qr+∆r =  Rate of heat transfer at r+∆r (W) 
rw =  Radius of wellbore (m) 
t = Time (s) 
Tcemo   = Temperature at interface of 

wellbore/formation (ºC) 
TD  = Dimensionless temperature defined by 

Hasan and Kabir (1991) 
tD  =  Dimensionless time 
Tt  =  Temperature of the earth at time t (°C) 
Tt+∆t  =  Temperature of the earth at time t+∆t (°C) 
∆Eelement =  Rate of change of the energy content within 

the element (W) 
∆r  =  Increment of radius length (m) 
∆t  =  Time interval (s) 
α   =  Thermal diffusivity of the earth (m

2
/s) 

ρe  =  Density of the earth (kg/m
3
) 
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