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Abstract: In this study, we propose a Genetic Algorithm (GA) based modular reconfigurable control scheme for an 
over-actuated non-linear aircraft model. The reconfiguration of the flight controller is achieved for the case of 
control surface faults/failures using a separate control distribution algorithm without modifying the base-line control 
law. The baseline Multi-Input Multi-Output (MIMO) Linear Quadratic Regulator (LQR) is optimized using GA to 
produce desired moment commands. Then, a GA based weighted pseudo-inverse method is used for effective 
distribution of commands between redundant control surfaces. Control surface effectiveness levels are used to 
redistribute the control commands to healthy actuators when a fault or failure occurs. Simulation results using 
ADMIRE aircraft model show the satisfactory performance in accommodating different faults, which confirm the 
efficiency of optimized reconfigurable design strategy. 
 
Keywords: Control allocation, genetic algorithm, linear quadratic regulator, non-linear aircraft model, pseudo-

inverse method 

 
INTRODUCTION 

 
In advanced safety critical systems, e.g., civil and 

modern combat aircraft, physical redundancy is ensured 
in the design by integrating multiple redundant control 
surfaces with Fly-By-Wire (FBW) technology (Brière 
and Traverse, 1993; Forssell and Nilson, 2005). In 
essence, these aircrafts have more actuating surfaces to 
control the same three rotational degrees of freedom 
(pitch, roll and yaw). Thus, the advance fight control 
schemes are utilizing available actuator redundancy for 
aircraft safety, survivability and maneuverability which 
on the other hand, increases cost, weight and design 
complexity. However, mixed control strategy allows the 
usage of already available control effectors to generate 
moments along other axes e.g., differential movement 
of elevator can be used to produce a rolling moment. 
Among the recent popular approaches to manage the 
actuator redundancy is the modular approach where a 
separate control allocator is introduced with base-line 
control strategy for handling actuator faults or failures 
(Harkegard, 2003; Shertzer et al., 2002). 

There is extensive literature available on control 
allocation strategies without consideration of an 
optimized baseline controller (Bordigon, 1996; Enns, 
1998). These optimization based control allocation 
methods have varying performance characteristics with 
respect to computational requirement, constraint 
handling, allocation efficiency and ease of 
implementation in open and closed-loop (Bodson, 
2001; Page and Steinberg, 2000). In recent years, 

researchers have used control allocation for fault 
tolerant and reconfigurable control in modular design 
(Joosten et al., 2007; Raza and Silverthorn, 1985; 
Ducard, 2009). However, none of these studies have 
discussed a powerful and fast natural evolution based 
optimization technique for reconfigurable modular 
flight control design. 

In this research study, base-line controller is 
optimized using GA with control allocation strategy for 
reconfigurable control in compensating actuator faults 
(Fig. 1). An optimal allocation strategy whose volume 
of the attainable subset (VΨ) is maximized through GA 
and compared with geometric constrained CA known as 
direct control allocation method proposed by Durham 
(1993, 1994) is used. The control surface deflection to 
angular acceleration relationship is treated as linear and 
presented in a control effectiveness matrix estimated at 
trim conditions. This complex problem of a desired 
moment commands distribution between multiple 
coupled control surfaces requires a fast, efficient and 
optimal solution. Improved performance of the modular 
design approach because of a global optimization 
algorithm which is highly adaptable for parallel 
processing is demonstrated in normal and fault 
conditions. 

The objective of this study is to optimally design 

and implement a control law and a CA strategy using 

evolutionary algorithm for nonlinear model of a generic 

aircraft (ADMIRE). In view of simplicity, robustness 

and reasonable performance, we have used LQR as a 

base-line   controller  with  control  allocation  approach  
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Fig. 1: Structure of GA optimized modular flight control 

 

based on pseudo-inverse method (Bodson, 2001). The 

optimized modular control strategy uses the 

identification of effectiveness level of the actuators to 

redistribute the control to the remaining actuators when 

faults occur. The novelty of this study as compared to 

previous study (Shi et al., 2010; Ahmad et al., 2009) 

lies in consideration of flight dynamics and actuator 

faults using optimal controller and control allocation 

approach tuned with an intelligent optimization 

algorithm for reconfigurable control. 

 

PROBLEM STATEMENT AND MODULAR 

CONTROL SCHEME 

 

Consider the linearized aircraft dynamics at a trim 

condition in state-space form as: 

 

 
, 

                   (1) 

 

where, 

 A = The n×n state matrix 

 Bu   = The n×m input control matrix 

 C = The p×n output matrix  
  

= The system state vector 
  

= The control input vector  

 = The system output vector to be controlled 

without excessive expense of control 

“effort”  

 

Here, we assume that all states are measurable and 

the system is full-state feedback system. 

Now we consider the actuator faults and failures in 

(1) and rewrite the state-space equation as: 

 

                (2) 

 

where, K = diag (k1,…, km) is the actuator effectiveness 

gain matrix or actuator fault/failure identification 

matrix and ki are scalars having values from 0 to 1. If ki 

= 1 the i
th

 actuator is functioning perfectly whereas if 0 

<ki <1, a fault is present in the actuator and if ki = 0 the 

actuator has failed completely. In this study, 

information about K will be used in control allocation 

algorithm for reconfigurable control design. 

To implement a control allocation strategy in 

modular approach we use virtual command concept 

(Harkegard, 2003) for redundant actuators. Control 

allocation is usually used for over-actuated systems, 

where the control devices are greater than the variables 

to be controlled) len(v)< len(u). Let assume that rank 

(Bu) = l<m in (1). So, Bu can be factorized as: 

 

                               (3) 

 

where ,  and are the 

control, virtual control and control effectiveness 

matrices respectively. 

The alternate state equation form of (1) can be 

given as: 

 

                              (4) 

 

                                            (5) 

 

where,  is the total control effort produced by 

the actuators and commanded by the base-line 

controller. Here, we consider that the number of virtual 

control (v) equals the number of outputs to be 

controlled (y), (l = p). Normally, the actuator dynamics 

are much faster than the aircraft dynamics. So, the 

control allocation process has a linear relationship 

between constrained control command (u) and virtual 

command (v) in (5). The control u(t) is limited by: 

 

                                                         (6) 

 

where,  and  are the lower and upper physical 

position deflection limits of actuators. The modular 
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structure of suggested scheme with control allocator 

and GA optimization is shown in Fig. 1. Here, the 

virtual command vector consists of, roll (Cl), pitch (Cm) 

and yaw (Cn) moments and u represents the 

commanded actuator positions: 

 

                (7) 

 

Base-Line Control law (LQR): Considering optimal 

control theory, we determine the virtual command by 

minimizing the following objective function: 

 

       (8) 

 

where, Q (positive semi-definite) and R (positive 

definite) are weighting matrices and x*, v* solve: 

 

                              (9)  

 

Cx r=                                                                (10) 

 

where, is the reference input and the optimized 

virtual command v is given by: 

 

                (11) 

 

                                                        (12) 

 

                                          (13) 

 

where,  

 

              (14) 

 

Here L, Lr and S are the feedback gain matrix, feed-

forward gain matrix and the unique positive semi-

definite and symmetric matrix solution to: 

 

             (15) 

 

The above expression is the famous Algebraic 

Riccatic Equation (ARE). Now, the optimized closed-

loop poles are the eigenvalues of A-BvL.  

The best LQR controller performance can be 

achieved by proper selection of Q and R weighting 

matrices. There are several methods available for 

determining weighting matrices, with closed loop poles 

placement in complex left half plane. The new poles 

placement improves the stability index and minimizes 

the control effort. The selection of Q and R weighting 

matrices was generally done intuitively. Whereas, 

different poles locations, because of weighting matrices 

and gains correspond to varying system performance. 

Thus employing intelligent optimization techniques for 

searching Q and R is more impressive. The weighting 

matrices Q = diag (18.46 0.72 0.74 6.78 1.48) and R = 

diag (0.15 20 3.5) are searched using genetic algorithm. 

The feedback gain matrix L derived using (13) is given 

as: 

 

 

 

Cascaded Generalized Inverse (CGI) method: 

Generalized inverse (GI) based solutions are very 

popular in control allocation. Where a control mixing 

matrix is used to satisfy BeP = Il, where Il is l×l identity 

matrix and m lP ×∈ℜ . The cascaded generalized inverse 

is an improved version of redistributed pseudo-inverse 

(Bordigon, 1996; Virning and Bodden, 1994)
 

is an 

optimization base linear control allocation method 

which exploits the use of generalized inverse, where the 

cost function is: 

 

                        (16) 

 

Subject to Beu = v. 

and the solution of (16) is given as: 

 

,u Pv=  
1 1 †( )u e uP W B W− −=                              (17) 

 

where ‘†’ is the left pseudo-inverse operator. The CGI 

allocator efficiency depends on the optimized Weighted 

Pseudo-Inverse (WPI) matrix P, where  is 

the diagonal weighting matrix which allows the 

designer to penalize the control commands. 

The procedure of the CGI is described as follows. 

Initially, a pseudo inverse is computed which distribute 

the controls given in response of desired moments from 

base-line controller. If the control inputs exceed the 

respective position limits the pseudo-inverse solution is 

limited to its respective maximum or minimum value 

and removed from the optimization and its effect is 

subtracted from the desired virtual command. Then, 

again   the pseudo-inverse based control allocation is 

performed for remaining unsaturated controls to 

achieve the desired moments. Keep, this process 

continues  until  the  desired  response  is achieved. The 

1
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Fig. 2: Increase in volume of subset of moments attainable (a) 30% (b) 34% (c) 40% (d) 46% 

 

cascaded generalized inverse method is simple and 

computationally efficient. The GA optimized pseudo-

inverse solution efficiency in our study is 

approximately 46%. The subset of attainable moments 

of WPI is shown in Fig. 2. Where, the allocation 

efficiency of pseudo-inverse solution is improved from 

30% to 46%. The optimized WPI matrix calculated 

using (17) is: 

 

 

 

OPTIMIZATION USING GA 

 

Genetic algorithms are widely used in optimization 

of engineering systems e.g., (Mohammadi and Akbar 

Nasab, 2011;  Farhani  et al.,  2011). For an appropriate  

design of closed loop flight control system, where we 

want to achieve the desired response output vector Yd = 

[Y1d ……. Yid]
T
, whereas the actual response of the 

system, is Y = [y1 ……. yi]
T
. So, it is necessary to use 

some intelligent optimization technique for closed loop 

system performance improvement by varying output Y 

as close to desired output Yd, through closed loop gain 

tuning and poles placement (Khan et al., 2011, 2012). 

The optimization problem is to minimize the 

difference between desired output vector Yd and real 

output Y. Considering the 2-norm of the difference 

vector, which sometimes referred to as minimum norm 

solution, we can relate the optimal index with the 

desired vector (Yd) as described: 

 

               (18) 

 

In modular flight control, one of the methods for 

improving control allocation efficiency for over-

actuated systems is to maximize the volume of 

attainable moment subset of allocation scheme (Π) as 

compare to the volume of Attainable Moment Subset 

(AMS) Φ  through  optimization. Here, by searching the 

best possible generalized inverse solution improve the 

efficiency of weighted pseudo-inverse based CGI 

allocator. Optimization objective for control allocator 

also involves finding a vector of control variable in the  

AMS that produce moment of same magnitude and 

direction as that of desired moment.  

Genetic algorithm is one of the most widely 

employed stochastic search and optimization  technique  

0.0164 0.2209 0.2232

0.0154 0.2126 0.2430

0.0539 0.0574 0.0807

0.0489 0.0780 0.0940

0.0473 0.0817 0.1129

0.0578 0.0542 0.0740

0.0312 0.0026 0.4277

P

− 
 − 
 − − −
 

= − − − 
 −
 

− 
 − − 

2
min dY Y−
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Fig. 3: Flow chart of multi-population GA (modified from 

(Haupt and Haupt, 2004)) 

 

for evolutionary computation which is a developing 

area of artificial intelligence. The GA starts with 

randomly initialized population of chromosomes and 

evolves towards the objective by utilizing evolution 

operators occurring in nature. The GA has been used in 
search, machine learning and optimal control 

(Goldberg, 1989). Several advantages of GA includes 

simultaneous   searching,   large   number   of variables 

handling and providing multiple optimum solutions 

where traditional optimization techniques fail. In this 

study we utilize the GA to find best weighting matrices 
for closed loop poles placement. 

The GA was introduced and developed by John 

Holland and proved by one of his students, David 

Goldberg,   as   a  strong  method  for  optimizing  large  

complex control systems. GA is a searching technique 

based on the process of natural genetics, selection, 

recombination and mutation. GA operates on the 

population of chromosomes based on the principle of 

fitness to produce best possible solution and selects 

chromosomes for crossover and mutation. After 

definition of fitness function and selection of GA 

parameters, the algorithm proceeds as shown in Fig. 3. 

 

1. Select an initial, random population of 

chromosomes (elements of diagonal weighting 

matrices) of specified size. 

2. Evaluate these chromosomes for Continuous 

Algebraic Riccati using (15) for feedback gain L. 

3. Simulation is performed with fittest individual set 

of the population. If the termination criterion is 

met, then go to 9. 

4. Reproduce next generation using probabilistic 

method. 

5. Implement crossover operation on reproduced 

chromosomes. 

6. Perform mutation operation with offspring 

evaluation. 

7. Execute reinsertion and migration. 

8. Repeat step 2 until best weighting matrices and 

control gain L matrix is achieved. 

9. End. 

 

This intelligent and systematic approach of 

determining optimized Q and R matrices (Fig. 4) has 

great precision and advantage over the time-consuming 

trial-error approach. Through this method we can 

achieve best possible closed loop response by placing 

poles of the system. The new gain matrix L increases 

the system stability to perturbations. Also, by 

employing the CGI allocator to efficiently distribute the 

input command vector among the control surfaces even 

in the case of partial or total failure of some actuating 

device improve overall system performance to 

faults/failures and make the whole system active fault 

tolerant. In this study, we have used the Control System 

and GA toolboxes with modifications. 

The optimization objective function for control 

allocation efficiency improvement is given as: 

 

 
 

Fig. 4: Chromosomal representation of Q and R matrices 
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                            (19) 

 

where, 

 
= The volume of the subset of ∂(Ω) which 

maps to ∂(Ф) 

 = The volume of the subset of attainable 

moments  

 = The ratio between the two volumes which 

will be maximized through GA. 

 

The details of finding maximum volume Attainable 

Moment Subset (AMS) can be found in our related 

previous publications (Shi et al., 2010; Khan et al., 

2011, 2012). 

 

ADMIRE FLIGHT CONTROL 

 

For evaluation of our purposed strategy we used 

generic aircraft model (ADMIRE) (Forssell and Nilson, 

2005), developed by the Swedish Defense Research 

Agency (FOI). It is a nonlinear, 6-DOF simulation 

model of a delta-canard configured, small single seated 

and single engine fighter aircraft with twelve control 

actuators. ADMIRE is freely available environment for 

flight control research, developed from Generic Aero-

data Model (GAM). ADMIRE flight envelop is valid up 

to Mach 1.2 and altitudes below 6 km with additional 

varying constraints on angle-of-attack, angle of sideslip 

and control surface due to aero-data. 

In Fig. 5, ADMIRE configuration with control 

effectors are: left and right canards (δlc and δrc), left 

inner and outer elevons (δlie and δloe), right inner  and  

outer  elevons  (δrie and δroe),   leading  edge  flaps (δle)  

and   rudder (δr), as well as leading gear (δldg), 

horizontal and vertical  thrust  vectoring (δth and δtv)  

and  air  brake (δab). Both canards and elevons are used 

for pitch control, rudder is used for yaw control and 

rudder with elevons is used for roll control.  There  is  a  

 

 
 

Fig. 5: ADMIRE aircraft configuration 

coupling between rudder and elevons which effects yaw 

and roll control. 

 

SIMULATION RESULTS 

 

The simulation presented here shows a linear 

model  trimmed  at  low  speed flight condition of Mach  

0.3 at an altitude of 3000 m. The state vector x = [α β p 

q r]
T 

consist of α angle of attack (rad), β angle of 

sideslip (rad),
 
p roll rate (rad/sec), q pitch rate (rad/sec) 

and  yaw rate (rad/sec). The controlled output vector 

is y = [α β p]
T
. For controller design with control 

allocation strategy, we will use only seven control 

surfaces [δlc, δrc, δroe, δrie, δlie, δloe, δr]
T
. 

Following are the respective linearized model 

matrices at trim point: 

 

 

…

 

 

In this example, the actuators position limits are 

considered and the approximate model with allocator 

can be given, where: 

 
 

 

where,  

 

 

…

 

  

The control limits used in the simulation were as 

follows: 
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Fig. 6: Aircraft reference trajectories and actual trajectories 

 

 

 

 
 
Fig. 7: Aircraft actuators deflection δ 

 

The resulting virtual control for control allocator 

input v = Beu consist of pure moments in roll, pitch and 

yaw produced by the control effectors (Harkegard, 

2003).   The    normal   flight   trajectories with actuator 

movements in ‘α-roll’ manoeuvre are shown in Fig. 6 

and  7, where a step demand of magnitude 20 deg is 

applied to α during 2-8 sec and a step of 100 deg for p 

is applied during 4-10 sec. 

The presence of control allocation module in the 

suggested modular approach, actuator faults can easily 

be accommodated with modified control effectiveness 

matrix instead of modifying  the  base-line  controller as  
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Fig. 8: Jammed canard (at 1 deg) fault: States and actuator deflection  

 

 

 
Fig. 9: Partial loss of control (left elevon) fault: States and actuator deflection 
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shown in Fig. 8 and 9. Because of faults in either 

canards or elevons cause an overshoot in pitch 

variables, Angle  of  Attack (AoA)  and  pitch  rate. But 

due to the availability of redundancy in ADMIRE 

aircraft,   pitch  moment  can  be  control  by  either  the 

canard or elevons (left and right).We can see that in the 

event of faults or failures, healthy elevons can replace 

the damaged canard by redistribution of control effort 

to elevons as much as possible to achieve the desired 

pitch moment (Fig. 8) and left elevon saturation can be 

compensated by redistributing the lost control effect to 

the right elevons and canards (Fig. 9). 

 

CONCLUSION 

 

This study has presented a GA based optimized 

modular control design for reconfigurable flight 

control. The effectiveness level of control surfaces is 

used in control allocation to redistribute the control 

commands to the remaining active actuators in fault and 

failure situations. This strategy guarantees the optimal 

performance of controller with efficient distribution of 

the desired efforts between redundant control effectors. 

GA based cascaded weighted pseudo-inverse method is 

presented with ADMIRE benchmark model for actuator 

faults or failures handling in reconfigurable control.  
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