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Abstract: In this study, an efficient biologically inspired constrained multi-objective optimization algorithm called 
Genetic Pareto Set Identification Algorithm plus Different Sex (GPSIA+DS) was developed. A complex system 
comprising of mixed configuration, k-out-of-n and redundant subsystem was used to validate GPSIA+DS in 
comparison with Genetic Pareto Set Identification Algorithm (GPSIA) and Fast Non–Dominated Sorting Genetic 
Algorithm plus Constrain Domination (NSGA-II+CD). The optimization strategy based on Genetic Pareto Set 
Identification Algorithm (GPSIA) only considered feasible solutions. That is, solutions, which satisfies all 
constraints conditions. Infeasible solutions could facilitate faster convergence to the true Pareto front. GPSIA+DS, 
which considers feasible and infeasible solutions in it optimization strategy was shown to outperform GPSIA and 
NSGA-II for the test problem considered. 
 
Keywords: Complex system, constrain, Genetic Algorithm (GA), Multi-Objective Optimization (MOO), Pareto set 

 
INTRODUCTION 

 
According to Kramer (2010) many continuous 

optimization problems in practice are subject to 
constraints. Constraints can make an easy problem hard 
and a hard problem even harder. Surprisingly, in the 
past only little research efforts have been devoted to the 
development of efficient and effective constraint-
handling techniques-in contrast to the energy invested 
in the development of new methods for unconstrained 
optimization. The performance of a constrained multi-
objective optimization algorithm is determined both by 
the search algorithm and the constraint-handling 
techniques used. 

Over the past two decades, there has been an 

increasing interest in the application of heuristics and 

meta-heuristics optimization techniques, especially 

those population-based heuristics, to multi-objective 

optimization problems. This is indicated by a 

considerable volume of publications and research 

activities in this field see Hansong (2006), Okafor and 

Sun (2012) and Bean and Hadj-Alouane (1992). 

However, only a small portion of these studies are 

focused on constrained multi-objective optimization 

techniques. 
Okafor and Sun (2012) developed an efficient GA-

based multi-objective optimization algorithm called 
GPSIA to tackle multi-objective optimization problem 
of a series-parallel engineering system. The 
optimization strategy in their study only considered 

feasible solutions. That is, solutions, which satisfies all 
constraints conditions.  

In review of the previous studies on constrained 
heuristics multi-objective optimization, it is observed 
that there is a noticeable lack of research efforts on 
either developing new constraint-handling techniques 
especially for multi-objective optimization, or applying 
advance single-objective constraint-handling techniques 
to multi-objective optimization. Furthermore, Hansong 
(2006) stated that there exist only a few systematic 
studies in the literature were comparative studies were 
performed to compare the performance of different 
constrained multi-objective optimization algorithms.  

Hence, the aim of this study is to develop a new 
biologically inspired constrained multi-objective 
optimization algorithm called Genetic Pareto Set 
Identification Algorithm plus Different Sex 
(GPSIA+DS), which considers the feasible and 
infeasible solution in it optimization strategy. 
GPSIA+DS is based on GPSIA that was proposed 
previously by Okafor and Sun (2012). Furthermore, 
GPSIA+DS will be applied to a bi-objective 
optimization problem of a complex engineering system 
in comparison with GPSIA and NSGA-II.  

 
CONSTRAINED MULTI-OBJECTIVE 

OPTIMIZATION PROBLEM 
 

Generally, constrained multi-objective 
programming problem is defined as follows: find a 
solution X = (��, ��, … , ��)	 in the n-dimensional 
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solution space �∗ that minimizes the objective 
functions �
(�). Mathematically, this is shown below: 
 

Minimize  �
(�) � = 1,2, … � 
 
Subject to: b inequality constraints �� (�)  ≥ 0, � = 1, 2, … , �  q equality constraints ℎ� (�) =  0, � = 1, 2, … , � 
 

A feasible solution X ∈ �∗ satisfies all b inequality 
and q equality constraints. All the Pareto-optimal 
solutions are subset of the feasible solutions.  �
(�) is 
the fitness function. 

 
EXISTING CONSTRAINT HANDLING 
TECHNIQUES IN OPTIMIZATION 

 
Penalty function: This is the most common constraint-
handling technique used in multi-objective 
optimization. In this method, the fitness function �
(�) for each solution is constructed as the sum of 
the objective function �
(�) and a penalty term, which 
depends on the constraint violations. This is given by 
Eq. (1): 
 �
(�) =  �
(�) + ( !)∝#(�)              (1) 
 

At generation t, parameter C and  are user defined; 
typical setting are C = 0.5, ∝ = 1, or 2. #(�) is a 
measure for the constraint violation. A frequent 
definition is shown in Eq. (2): 
 #(�) = ∑ �%&'0, ��(�)() + ∑ |ℎ�(�)|+,�-�.�-�    (2)  

  
where, / ≥ 1 and 3 ≥ 1. Generally, techniques based 
on this approach decrease the fitness of infeasible 
solutions by taking the number of infeasible constraints 
or the distance to feasibility into account see Fiacco and 
McCormick (1964), Homaifar et al. (1994), Kuri-
Morales and Quezade (1998) and Kramer and Schwefel 
(2006). In the death penalty approach by Kramer and 
Schwefel (2006), infeasible solutions are rejected and 
new solutions are created until enough feasible ones 
exist. In the co-evolutionary penalty function approach 
by Coello (2002), the penalty factors of an inner 
evolutionary algorithm are adapted by an outer 
evolutionary algorithm.  
  
Repair algorithm: According to Belur (1997) and 
Coello (2002) these approaches either replace infeasible 
solutions or only use the repaired solutions for 
evaluation of their infeasible pendants. This class of 
algorithms can also be seen as local search methods that 
reduce the constraint violation. The repair algorithm 
generates a feasible solution from an infeasible one. In 
general, defining a repair algorithm can be as complex 
as solving the problem itself. 
 
Feasibility preserving representation and operators: 
These techniques force candidate solutions to be 

feasible see Paredis (1994). A famous example is the 
GENOCOP algorithm by Michalewicz and Fogel 
(2000) that reduces the problem to convex search 
spaces and linear constraints. A predator-prey approach 
to handle constraints is proposed by Paredis (1994) 
using two separate populations. A comprehensive 
overview to decoder-based constraint handling 
techniques is given by Coello (2002). 
 
Decoder functions: According to Coello (2002), 
Paredis (1994) and Michalewicz and Fogel (2000) 
decoder functions build up a relationship between the 
constrained solution space and an artificial solution 
space easier to handle. They map a genotype into a 
feasible phenotype. By this means even quite different 
genotypes may be mapped onto the same phenotype. 
Eiben and Smith (2003) define decoders as a class of 

mappings from the genotype space 4′ to the feasible 
regions ℱ of the solution space �∗with the following 

properties: every � 6 4′ must map to a single solution  6 ℱ , every solution � 6 ℱ must have at least one 

representation 6 4′ and every � 6 ℱ must have the same 

number of representations in 4′ (this need not be one). 
 
Multi-Objective optimization techniques: Coello 
(1999) stated that these are based on the idea of 
handling each constraint as an objective function. 
Under this assumption many multi-objective 
optimization methods can be applied. These techniques 
were used by Surry et al. (1995), Jimenez and 
Verdegay (1999). In the behavioral memory method by 
Schoenauer and Xanthakis (1993) the Evolution 
Algorithm (EA) concentrates on minimizing the 
constraint violation of each constraint in a certain order 
and optimizing the objective function in the last step. 
Montes and Coello (2005) introduced a technique based 
on a multi-member Evolutionary Strategy (ES) with a 
feasibility comparison mechanism. Mezura-Montes 
(2009) gave a survey of constraint-handling methods 
for evolutionary algorithms. 

 
PROPOSED BIOLOGICALLY INSPIRED 
CONSTRAIN HANDLING TECHNIQUE 

 
Detailed description of GPSIA was presented in 

Okafor and Sun (2012). GPSIA simply combined 
heuristic approach and genetic algorithm in order to 
filter good solution in three stages. The first stage 
selects best solutions based on individual objective 
function fitness assessment. Superior or improved 
solutions from stage I are transferred to stage II. At 
stage II, weighted sum approach based on randomly 
generated weight was implemented genetically. In stage 
III, heuristic based Pareto filter technique is applied to 
the successful solutions generated from stage II, in 
order to generate the Pareto set. 

In this study GPSIA plus Different Sex (DS) 

approach is proposed. Every individual in the 

GPSIA+DS approach is assigned to a feature called its 

sex.  Similar  to  nature,  an  individual  sex is identified  
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Fig. 1: Shows the feasible solution, infeasible solutions and 

the true POF 

 

 
 
Fig. 2: Shows mating between the feasible and infeasible 

solutions 

 

 
 
Fig. 3: Shows the feasible and infeasible solutions converging 

to the true POF 

 

based on satisfaction of constrain conditions. 

Individuals with sex fm do not satisfy constrain 

conditions. Hence, are referred to as females. 

Individuals with sex ml satisfies the constrain 

conditions and are referred to as males. The GPSIA+DS 

reproduction proposed is based on the following rules. 

 

• Each selected parent of every generation is allowed 

to  mate  once  with  a  randomly  selected   partner 

• Mating is only possible between parent of different 

sex (female and male) 

• Parents are reintroduce into their respective 

population as soon as mating is completed 

• Offspring sex are identified and introduced into 

population of same sex 

• Two offspring are produced from every mating.  

 

The driving principle of this technique is illustrated 

in Fig. 1, 2 and 3. 

Figure 1 shows the feasible (males) and infeasible 

(females) search space and the true Pareto Optimal 

Front (POF). The optimum of the unconstrained 

objective function lies beyond the boundary in the 

infeasible search space. In the so-called GPSIA+DS 

female parents (78
) are selected out of female 

population (9:;) with sex ��, whereas male parents 

(7
<) are selected out of male population (9:=  ) with sex �>. The individuals with sex �� were selected 

according to the objective function, they tend to lie 

finally in the infeasible search space (black triangle) 

whereas the �> sex individuals are selected by the 

fulfillment of all constraints, hence fall in the feasible 

search space (black circles). The measurement G for the 

fulfillment of constraints has already been defined in 

Eq. (2). There are other variants of G measurement. In 

this study G is measured according to Eq. (3): 

 

#(&) = �%&?@∑  	ABC<-� ℎ<DEF<DG  −  IJK; 0M          (3) 

 

By means of intermediate recombination 

(crossover) between parents of different sex, as shown 

in Fig. 2, all individuals get closer to the optimum of 

the problem, but still are found on opposite sides of the 

boundaries between the feasible and infeasible search 

space as shown in Fig. 3.  

 

Test problem: The constrained multi-objective test 

problem in this study is a complex system structure 

shown in Fig. 4. The complex system consists of four 

subsystems. Subsystem 1 and 3 are mixed 

configuration, subsystem 2 is a k-out-of-n and 

subsystem 4 is a redundant system. 

Subsystem 4 could be designed adopting any of the 

three redundancy options shown in Table 1. The 

complex system consists of 17 components and 14 

component types represented by blocks numbered 1 to 

14 as shown in Fig. 4. 

System reliability NO(P) and system cost  O are the 

design objectives subject to the system weight 

constrain. The optimization formulation for the 

complex system is given by Eq. (4): 

 

Maximize 

NO(P) =  Q NO�
R

�-�
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Table 1: Subsystem 4 possible redundancy strategy 

Options Redundancy strategy 

1 Active Redundancy (AR) 

2 Cold Standby with a Perfect Switch System (CSPSS) 
3 Cold Standby with an Imperfect Switching System (CSIPSS) 

 

 
 
Fig. 4: Complex system 

 

Minimize 

  O =   S  ℎ<D .  <D
	ABC

<-�
 

Subject to: ∑  ℎ<D . F<D	ABC<-�   ≤ IJ, 1 ≤ V ≤ 4                 (4) 

 

where: X = 4, for the test problem considered in this 

study: 

 

 NO�  =  YZD + Y[D − YZDY[D + Y�DY�DY\D −
Y�DY�DY\DYZD − Y�DY�DY\Y[D + Y�DY�DY\DYZDY[D +
Y�DY\D − Y�DY]DYZD − Y�DY]DY[D + Y�DY]DYZDY[D −
Y�DY�DY\DY]D + Y�DY�DY\DY]DYZD + Y�DY�DY\DY]DY[D −
Y�DY�DY\DY]DYZDY[D 

 

 NO�  =  ∑  ]̂ Y_D̂]�-^ E1 − Y_DG]`^ a = 2, 3,4 

 

 NO\  =  Y�cD + YdDYeD + Y��DY��D − YdDYeDY�cD −
 Y�cDY��DY��D − YdDYeDY��DY��D + YdDYeDY�cDY��DY��D   

 NO]  =  Y�\D +  Y�]D −   Y�\D  Y�]D  �fY fg!�fh = 1,  
 =  Y�\D + i ��\D(j) Y�]D(! − j)Xj:

c  �fY fg!�fh =
2 =  Y�\D + i ��\D(j)k;Y�]D(! − j)Xj:

c  �fY  
fg!�fh = 3 

 

where l�=:  is the total number of components types 

used in the system, l�=: = 14, > = 1, 2, … , l�=:, ℎ<D  is 

the repetition of option V for component type >.  <D and 

F<D  is the cost and weight of option V and component 

type >. NO�,  NO�,  NO\,  NO] are the reliabilities of 

subsystem 1, 2, 3 and 4 respectively. Y<D  is the reliability 

of option V for component type >. 
In Okafor and Sun (2012), weighted approach was 

implemented. Similar approach is implemented in this 

study. Given a set of weights (ω�, ω�) and choosing 

random values m� > 0 and m� > 0 according to the 

preference of the decision maker, the optimization 
problem could be stated as shown in Eq. (5): 
 

 ��h���op q =  m�(1 − NO∗(P)) +  m� O∗ 

 rs�Vpt! !f: v∑  ℎ<D . F<D	ABC<-�  ≤ IJ ,
ℒD ≤ V ≤ xD

y > = 1, … , l�=:    (5) 

 

where, ℒD  denote the lower bound of the available 

system components options and xDdenote the upper 

bound of the same variables. ℒD = 1 and xD = 4 was 

used in the study. NO∗(P) and  O∗ are the normalized 

form of NO(P) and  O respectively. The complexity of 
the test problem is tunable through assigning different 

values to parameters shown in Table 2, changing the a 
value of subsystem 2, changing the redundancy strategy 
and system configuration.  
 

Constrained GPSIA: GPSIA+DS: To deal with 

constrained multi-objective optimization problems, we 

proposed a biologically constrained GPSIA named 

GPSIA+DS (DS represent different sex) by applying 

the principle of different sex approach to the GPSIA 

published by Okafor and Sun (2012).  
 
Solution encoding: The solution encoding is designed 
such that, components can be selected only in one 
combination amongst the j available options. The 
solution is therefore, encoded into a chromosome 
constituted by (2, Tnct) matrix. The complex system 
comprises of four subsystems. The number of columns 
within a system represents the number of components 
within that subsystem. Therefore components in 
subsystems 1, 2, 3 and 4 are represented by 6, 1, 5 and 
2 columns respectively. The first row represents the 
component option selected, while the second row 
represents subsystems design options. Subsystems 1 
and 3 are assumed to have fixed design configuration 
represented by zeros.  
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Table 2: Failure, cost and weight parameter setting 

l 
 option1 (j = 1) 
------------------------------- 

 option2 (j = 2) 
------------------------------- 

 option3 (j = 3) 
-------------------------------------- 

 option4 (j = 4) 
------------------------------------------------ 

 P<D   <D F<D  P<D  <D F<D  P<D   <D F<D  P<D  <D  F<D 

1 1.0452e5 1 6 4.1430e6 3 8 8.0256e6 2 4 1.0864e6 4 10 
2 1.2511e6 2 16 2.5695e5 1 6 1.1872e6 4 18 1.4945e6 2 10 
3 4.9252e6 5 14 9.1267e6 2 10 6.4595e6 3 12 1.8747e5 2 8 
4 4.7181e6 4 10 1.3816e5 2 12 4.9252e6 3 8 1.1573e6 7 8 
5 8.3667e6 4 8 8.8804e6 4 6 1.0094e6 5 19 1.8535e5 2 8 
6 2.9566e6 3 10 2.1618e5 1 6 1.2459e6 6 15 1.9653e5 2 8 
7 1.0511e5 8 18 1.1442e5 5 16 1.6806e5 3 18 1.3776e5 4 8 
8 1.3220e6 3 8 1.3227e5 2 14 1.0511e6 6 12 1.1352e6 4 8 
9 1.2637e5 3 16 1.3264e5 2 18 1.1195e6 5 20 2.3447e5 1 16 
10 4.8827e6 8 20 5.8556e6 4 10 6.2608e6 4 12 1.8428e5 3 16 
11 1.1908e5 2 10 1.5103e6 7 12 2.2328e6 5 12 6.6254e6 3 16 
12 4.1590e6 6 14 4.7345e6 4 10 5.1707e6 2 12 1.6714e5 1 14 
13 2.3779e5 3 10 2.3270e5 3 10 1.4146e6 6 15 2.7050e5 2 8 
14 6.9815e6 4 12 1.7683e5 3 10 1.2756e6 7 17 3.8340e6 5 18 

 

 
 
Fig. 5: Solution encoding 

 
Fig. 6: GPSIA+DS reproduction strategy 

 

 
 
Fig. 7: Illustration of the complex system crossover 
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Fig. 8: An illustration of the complex system mutation strategy 

 

Subsystem 2 is a k-out-of-n system. k can take 

values 2, 3 or 4, while n is set to 4. Subsystem 4 can be 

designed adopting any of the three redundancy 

strategies. They are AR, CSPSS, CSIPSS, 

corresponding to values 1, 2, 3 in the chromosome 

respectively. An example of the solution encoding is 

shown in Fig. 5. This figure represents a possible 

solution with option 1 of component type 4 selected in 

subsystem 1, option 4 of component type 7 selected in 

subsystem 2 and a equals to 2. Option 2 of component 

type 12 selected in subsystem 3 and option 4 of 

component type 14, with CSIPSS redundancy strategy 

selected in subsystem 4.  

 

Initial population: A population size of 9 =  9= +9; chromosomes was used in this study, where 9= = 10 

and 9; = 10. 

 

Crossover: Male parents (7
<) were selected from 

population 9:= based on the fitness  value  shown  in  

Eq. (6) and the selection probability r�=(&), while 

female parents 78
 parents were selected from the 

population 9:; based on the dynamic penalty function 

shown in Eq. (7) and the selection probability r�;(�). 

Since it is a minimization problem, parents with lower 

fitness value in their population are better and has 

higher chances of been selected. 78
 = 7
< = 5 was 

used in this work. Ten offspring are produced from the 

reproduction between parents in every generation. 

Offspring sex are identified and combined with the 

existing solutions of same sex. Solutions of size 9= with 

the best fitness values were selected from population 9:= 

and transfer to stage III. A crossover probability of 0.8 

was used in this work as the breeding operator. 

Offspring are produced via a uniform crossover 

breeding operator. A binary window of same size with 

that of the chromosomes is generated based on the 

breeding operator as described in Okafor and Sun 

(2012). Figure 6 illustrates this reproduction strategy 

using flow diagram. An illustration of the complex 

system crossover is shown in Fig. 7. 

 

Mutation: The mutation operator executes random 

alterations to the selected solutions based on a simple 

mutation condition. The value within the solution 

matrix is randomly modified at a mutation rate of 0.05. 

Random mutation operator of same size with the 

chromosome was generated with a MATLAB function 

rand (2, 14). Mutation occurs at all points in the 

offspring corresponding to same point in the random 

mutation operator with values less or equal to mutation 

rate. Chromosomes with component option j values of 1 

to 3 at all points in which mutation can occur are 

converted to j+1. Otherwise are convert to j-1. 

Subsystem 2, with k value of 2 or 3 is converted to k+1. 

Else it is converted to k-1. The redundancy option of 

subsystem 4 with values 1 or 2 is converted to 2 or 3 

respectively. Otherwise it is converted to 2. Figure 8 

illustrates a possible mutation solution for the complex 

system. Mutation is ignored for all zero points.  

Where, BM, MO and AM represents before 

mutation, mutation operator and after mutation 

respectively. 

 

Pareto set selection: The fitness values of successful 

solution set from stage II points were computed using 

Eq. (6) and the current frontier points were be identified 

based on their fitness values: 

 

         (6) 

 

where �8�  denotes the fitness value of the i
th

 solution 

(chromosome) from the set of solutions transferred to 

stage III; �JO^�  is the scaled k:� objective function value 

of the �:� solution (chromosome), a = 1 ,…, m. The 

maximum (max) in Eq. (6) is over all other solutions > ≠ � in the set and the minimum (min) is over all the 

objectives. The objectives, �JO�,�JO� , … , �JO
 in the Eq. 

(6) are scaled to take values between 0 and 1. Scaling is 

achieved using Eq. (7): 

 

�JO�� = 8���,�` 
��8���,

J�8���,`
��8���,                                   (7) 

 

where �.O�,� denotes unscaled valued of the first 

objective for �:� solution (chromosome); �%&�.O�, 
denotes the maximum unscaled valued of the first 

objective of all solutions in the population; and ��h�.O�, denotes the minimum unscaled valued of the 

first objective of all solutions in the population. In case 
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that an objective function is a constant, the scaled 

objective function �JO��  is taken as 1 in this study. 

 

GPSIA+DS Algorithm:  
 

Stage I: Create subpopulation of size �O= and �O; where 

�O= = 9= �� and �O;  = 9; ��  

Step 1: Start with a random initial population 9: . Set ! =  0, 

 

where  9: = 9:= +  9:; 

 

Step 2: If the stopping criterion is satisfied, return 9O, 

Step 3: For the objectives, a = 1, … , m, perform the 

following steps: 

 

Step 3.1: For � =  1, … , 9= and V =  1, … , 9; assign 

fitness value �̂ �=  =  �̂=(&�) and �̂ D;  =
 �̂;(��) to the �:� %hX V:� solution 

respectively. 

Step 3.2: Based on the fitness values assigned in step 

3.1 select �O= best solutions between 

1 and 9=:� solutions and �O; best solutions 

between 1 and 9;:� solutions to create 

subpopulation 9̂= and 9̂; respectively. 

Step 4: Combine all subpopulations (9�= , … , 9̂=) to 

create 9:��=  and all subpopulations (9�; , … , 9̂;) to create 9:��;  of size 9=  and 9; 

respectively. Set Gen = Gen + 1, set 9:= = 9:��= , 9:; = 9:��;  

 

Stage II: 

 

Step 5: Assign a fitness value for solution & ∈ 9:=  and � ∈ 9:;, by performing the following steps: 

Step 5.1: Calculate the random weight of each 

objective a %� m^ =  s^/ ∑ s�
�-�  

Step 5.2: Calculate the fitness of all solutions contained 

in 9:=and 9:;using Eq. (8) and (9): 

 �=(&)  =  ∑ m^�̂=(&)
̂-�                              (8)  

 

   (9) 

 

where m���(. ) =  m�(1 − NO∗(P)) and m���(. ) = m� O∗ 

 

Step 5.3: Calculates the selection probability of each 

solution & ∈ 9:=  and � ∈ 9:;as follow:  

 

 
 

Step 5.4: Perform crossover and mutation on the 

selected parents based on their selection 

probability 

Step 5.5: Compute offspring fitness. 

Step 6:  For Q generated offspring, if � (� ≤ �) 

offspring satisfies constrain condition insert � solutions into 9:= and � − � solutions into 9:;. Compare the fitness values of the � and � − � offspring with those of solutions 

existing in 9:= and 9:; respectively. Eliminate 

the weakest � and � − � solutions from Pt
c 

and 9:;respectively 

Step 7:  If t = 1 randomly select z [3 ≤ z ≤ 9=] best 

solutions. Else select 9= solutions  

 

Stage III 

 

Step 8: Compute the fitness value based on Eq. (6) 

and identify current frontier points. 

 

Step 8.1: For all solutions z or 9= from step 7, 

If t = 1 

Retain all solutions along with the current 

frontier points 

Else if 1 ≤ �8� ≤ 2 

Retain solution point (current frontier points) 

Else  

Discard solution.  

End 

End 

 

Step 9: Combining the frontier points from last step 

with current frontier points in the archive. 

Step 9.1: Identify the new current frontier points of the 

combined solution points (P���) 

Step 9.2: Set 9O - 9O�� 

Step 10: Once termination criterion is satisfied 

compute the distances between successive 

Pareto points. Else Set ! =  ! + 1 and set 9: = 9:�1 go to step2. End 

 

where, � is the number of objective function, �̂ � is 

stage I fitness value for the k
th

 objective and the i
th

 

solution, �=(&), �;(�) is stage II fitness values for 

solution & ∈ 9:= , � ∈ 9:; respectively, �O= and �O; is 

subpopulation sizes for the male and female individuals 

respectively, 9= , 9;  is the initial population size for the 

male and female individuals respectively,  9:  is the total 

population at generation t, 9:= , 9:; is the male and 

female population at generation t respectively, F�  is 

weight of the i
th

 objective functions, �
��is minimum 

fitness value at stage II for all �(&)/& ∈ 9: , �̂;(�), �̂=(&) is the fitness value of the a:� objective for 

female and male solutions respectively. Ps is the Pareto 

set. C is a constant. C = 0.5 was used. 
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Table 3: Quantitative comparison between GPSIA+DS with GPSIA 

and NSGA-II+CD 

Algorithms System Mean S.D. 

GPSIA+DS Complex 1.606711 1.474096 
GPSIA Complex 1.659342 1.713463 

NSGA-II+CD Complex 1.659342 1.542854 

 

 
 
Fig. 9: Plot cost against reliability for the complex system 

 

Stage I of GPSIA is basically same with stage I of 

GPSIA+DS. The main difference is that in GPSIA, step 

1 to step 4 is performed for individuals in the feasible 

search space, while for GPSIA+DS step 1 to step 4 is 

performed for individuals in both the feasible and 

infeasible search space. 

Stage II of GPSIA implemented one fitness 

assessment based on weighted sum, while GPSIA+DS 

implemented two fitness assessment strategies. The 

fitness of individuals in the feasible search space was 

computed using weighted sum approach similar to that 

of GPSIA developed by Okafor and Sun (2012). 

However, the fitness of individuals in the infeasible 

search space was computed using a dynamic penalty 

function (Eq. 9). Stage III Pareto set selection principle 

is based on the same techniques describe in Okafor and 

Sun (2012). 

 

Comparative study: 

Performance metrics: In order to ensure convergence 

to the true Pareto-optimal front and well-distributed set 

of the non-dominated solutions, many performance 

metrics have been proposed to evaluate the efficiency 

of a multi-objective optimization algorithm. Some of 

the commonly used once are based on spacing, spread 

and geometric distance. In this study spacing technique 

was adopted so as to enable the estimation of standard 

deviation associated with each algorithm compared in 

this study. The spacing metric is given in Eq. (10): 

 

X��O� = �∑ ?�(�)
̂J� − �(�)
̂��M2
̂-�              (10)  

 

where X��O�
 is the distance between successive point in 

the Pareto set. �(�)
̂J�  and �(�)
̂�� are the maximum 

and minimum values of the a!ℎ objective between 

successive points in the Pareto set respectively.  

Experimental design: As reported before, the 

performance of a constrained multi-objective 

optimization algorithm is determined by both the multi-

objective search algorithm and the constraint handling 

technique used. To investigate how the two components 

affect the performance of a constrained multi-objective 

optimization algorithm, a comparative study is design 

as follows. 

In this comparative study, the proposed 

GPSIA+DS was compared with two multi-objective 

optimization algorithms. The first competitor named 

GPSIA, which was presented by Okafor and Sun (2012) 

implemented death penalty for all solution in the 

infeasible space. The second competitor developed by 

Deb (2000), called NSGA-II+CD, adopted NSGA-II 

search algorithm, while incorporating constrained-

domination principle. The comparative studies 

performed in Deb (2000), demonstrated that NSGA-

II+CD is a state-of-the-art algorithm in constrained 

multi-objective optimization. 

In the experiment, the same reproduction parameter 

setting was used for GPSIA+DS and GPSIA. Each 

component has a minimum of four options to select 

from. For each search algorithm, a population size = 20, 

crossover probability = 0.8, the mutation rate = 0.05, 

mission time (t) = 17520h, τ = 8760h, C = 0.5 and 

weight constrain limit (W
a) = 206 were used.  

Similarly, the comparative study between 
GPSIA+DS and NSGA-II+CD was done based on the 
same parameter setting. 50 generation was set, as the 
termination criteria and each algorithm was executed 
four times for the test problem. The simulated results 
are shown in Table 3 and Fig. 9. The following 
discussion can be made from the results.  
 
Comparing GPSIA+DS with GPSIA: It is observed 
that GPSIA+DS outperformed GPSIA for the complex 
system considered. This shows that the proposed multi-
objective version which implemented different sex 
constraint handling technique has a better constrain-
handling ability than the death penalty, which GPSIA is 
based on.  
 
Comparing GPSIA+DS with NSGA-II+CD: The 
simulated results revealed that GPSIA+DS out 
performed NSGA-II+CD on the test problems. While, 
GPSIA+DS showed better result on the complex system 
structure considered, conclusion is not reached that 
GPSIA+DS is better than NSGA-II+CD in all multi-
objective problem. However, it is evident that 
GPSIA+DS is an efficient multi-objective algorithm. 

 

CONCLUSION 
 

In this study, an efficient biologically inspired 
constrained multi-objective algorithm based on the 
GPSIA, that was proposed by Okafor and Sun (2012) 
was developed. In developing the biologically 
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constrained GPSIA, Different Sex (DS) approach, 
which only permits reproduction between parents of 
different sex (male and female), was implemented by 
extending it application to multi-objective problems. 
Solutions that satisfy the constraint conditions (feasible) 
were referred to as males, while those, which could not 
satisfy the constraint conditions (infeasible), were 
referred to as females. The performance of GPSIA+DS 
was investigated through a comparative study. In the 
comparative study, GPSIA+DS was compared with two 
constrained multi-objective algorithms (GPSIA and 
NSGA-II+CD). The result shows that GPSIA+DS 
achieved the best performance on the test problem. 
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