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Abstract: In this study, an observer based decentralized Fuzzy Adaptive Controller (FAC) is designed for a class of 
large scale non-affine nonlinear systems with unknown functions of the subsystems and interactions. The proposed 
controller has the following main characteristics: 1) On-line adaptation of both controller and observer parameters, 
2) stabilization of the closed loop system, 3) convergence of both tracking and observer errors to zero, 4) 
boundedness of all signals involved, 5) being prone to employing experts’ knowledge in controller design procedure, 
6) chattering avoidance. An illustrative example is given to show the promising performance of the proposed 
method. 
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INTRODUCTION 

 
In the control of large-scale systems, one usually 

faces poor knowledge on the plant parameters and 
interconnections among subsystems.  

As a result of both tunable structure of the FAC and 
using the experts’ knowledge in controller design 
procedure, Fuzzy Adaptive Controller (FAC) attracted 
many researchers to develop appropriate controllers for 
nonlinear systems especially for Large Scale Systems 
(LSS). 

In the recent years, FAC has been fully studied. 
Initially, the Takagi-Sugeno (TS) fuzzy systems have 
been used to model nonlinear systems and then TS 
based controllers have been designed with guaranteed 
stability (Feng et al., 2002). Modeling affine nonlinear 
systems and designing stable TS fuzzy based controllers 
have been employed in Hsu et al. (2003). Designing of 
the sliding mode fuzzy adaptive controller for a class of 
multivariable TS fuzzy systems were presented in 
Cheng and Chien (2006). In Park and Park (2004), the 
non-affine nonlinear function were first approximated 
by the TS fuzzy systems and then stable TS fuzzy 
controller and observer have been designed for the 
obtained model. In these studies, due to the assumption 
that the systems should be linearizable around some 
operating points modeling and designing of appropriate 
controllers could be simply done. 

The linguistic fuzzy systems have also been used to 
design controllers for nonlinear systems. 

Jagannathan (1998), Zhang and Bien (2000) and 
Zhang et al. (2002) have considered linguistic fuzzy 
systems to design stable adaptive controller for affine 
systems based on feedback linearization and furthermore 
in Zhang et al. (2002) and Zhang and Bien (2000), it has 
considered that the zero dynamic should be stable. 
Stable FAC based on sliding mode was designed for 
affine systems in Labiod et al. (2005). Designing FAC 
for affine chaotic systems were presented in Chen et al. 
(1999). Designing stable FAC and linear observers for 
class of affine nonlinear systems were discussed in Ho 
et al. (2005), Zhang (2006) and Shaocheng et al. (2005). 
Fuzzy adaptive sliding mode controllers were presented 
for class of affine nonlinear time delay systems in Yu 
(2004), Chiang (2005) and Jiang et al. (2005). The 
output feedback FAC for class of affine nonlinear 
MIMO systems was suggested in Yiqian et al. (2004). A 
robust adaptive fuzzy controller, based on a linear state 
observer, for a class of affine nonlinear systems has 
been presented in Hamzaoui et al. (2004). In Tong et al. 
(2004), direct and indirect adaptive output-feedback 
fuzzy decentralized controllers for a class of large-scale 
affine nonlinear systems have been developed based on 
linear observer. Vélez-Díaz and Tang (2004) presented 
fuzzy adaptive controller for a class of affine nonlinear 
systems. This method guarantied ultimately 
boundedness of tracking error. A direct adaptive fuzzy 
controller for a non-minimum phase two-axis inverted 
pendulum servomechanism has been presented based on 
real-time stabilization in Wai et al. (2008). The main 
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drawbacks of these studies are those restricted 
conditions imposed on the system dynamics. For 
example, it is assumed the control gain is bounded to 
some known functions or constant values.  

Labiod and Guerra (2007) and Liu and Wang 

(2007) developed stable FAC for class of non-affine 

nonlinear systems. The main limitation of these methods 

is that convergence of tracking errors to zero was not 

guaranteed. Ghasemi et al. (2009) proposed a 

decentralized fuzzy model reference state tracking 

controller for a class of canonical nonlinear large scale 

system. The main limitations of these references are 

both considering the interaction as a bounded 

disturbance and availability of all states. 

The main contributions of this study are as follows. 

We propose a new method to design a stable observer 

based decentralized robust adaptive controller based on 

fuzzy systems for a class of large scale non-affine 

nonlinear systems. The controller is robust against 

uncertainties, external disturbances and approximation 

errors. Compared with the previous studies which 

mainly concentrated on observer-based affine SISO 

systems and observer based affine large scale systems, 

the proposed method is an observer based non-affine 

nonlinear large scale systems.  
 

PROBLEM STATEMENT 
 

Consider the following large scale non-affine 
nonlinear system: 
 

, , 1

, 1 2

1,2,..., 1

( , ) ( , ,..., ) ( )

1,2,...,

i

i l i l i

i n i i i i N i

T

i i i

x x l n

x f x u m x x x d t

y C x

i N

+= = −


= + +
 =
=

&

&
              (1) 

 

where,  
xi, l : l

th
 state of the i

th
 subsystem  

ni 
: The number of states in thi subsystem  

N : The number of subsystems  

ui � R
 

: The control input  

i
y R∈

 
: The system output  

i i i
f (x , u ) 

 
: An unknown smooth nonlinear function  

di (t) : A bounded external disturbance 

1 2
( , ,..., )

i N
m x x x  : An unknown nonlinear interconnection 

term  
i

i,ni

nT

i i,1
x  = [x , . . . , x ]  R∈

 
: The state vector of the system 

which is assumed available for measurement 
 
The control objective is to design an adaptive fuzzy 

controller for system (1) such that the system output 

i
y (t) follows a desired trajectory 

im
y (t) while all signals 

in the closed-loop system remain bounded. 
In this study, we will make the following 

assumptions concerning the system (1) and the desired 
trajectory yim (t). 

Assumption 1: Without loss of generality, it is assumed 
that the nonzero function 

u i i i i i i
f (x , u ) = f  (x , u ) u∂ ∂  

satisfies the following condition: 
 

in

iu i i min i i

iu i i

dm

f (x , u ) f  > 0   (x , u )  × 

f (x , u )
f  

R R

d

dt

≥ ∀ ∈

≥
         (2) 

 

min dm
f ,f  R∈  are known constant parameters and it is 

defined later. It should be noted that the condition 

min
f >0 does not play a crucial role because as it will be 

shown later the proposed controller designed, can still 

work after some modifications if we assume 
min

f <0 : 

 

Assumption 2: The desired trajectory 
im

y (t) and its 

time derivatives (j)

imy ( ), 1, 2,..., it j n= , are all smooth and 

bounded. 
The interactions are considered as external inputs 

and assumed to be bounded functions of subsystems 
states. To make it more suitable for the proposed 
controller derivation, the following assumption is used. 
  
Assumption 3: The interconnection term satisfies the 
following: 
 

( )1 2 0 1
ˆ( , ,..., ) ,

N

i N i ij j jj
m x x x x xξ ξ

=
≤ +∑         (3) 

 

Each interaction upper bound ( )0 1
ˆ,

N

i ij j jj
x xξ ξ

=
+∑  is 

unknown. The scalar terms 
0i

ξ
 
and function ( )ˆ,

ij j j
x xξ

are to be estimated properly.  
 
Assumption 4: The external disturbance is bounded as: 
  

max
( )

i
d t d

∞
≤                  (4) 

 

Denoting ˆ ( )
i

x t  as an estimation of ( )
i

x t , we 

define the following: 
 

(n-1) T

im im im im

(n-1) T

im i i i

(n-1) T

im i i i

 y =[y  y  ...y ]

e =y -x = [e  e  ...e ]

ˆ ˆ ˆ ˆˆe =y -x = [e  e  ...e ]

ˆ

i i

i i

i i i
e e e= −

&

&

&

%

                (5) 

 

im y
 
= The reference signal 

i
e

 
= The tracking error 

î
e

 
= The observer error  

i
e%

 
= The observation error 

 
Consider the following tracking error vector: 
 

i

i

nT

i i,1 i,2 i,n
 e = [e , e , . . . , e ] R∈                (6) 
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where, 
(j)

i,1 im i i,j i,1
e = y -y , e =e                               (7) 

 

Taking the ni
th

 
derivative of both sides of the Eq. (7) 

we have: 
 

i i i i

i im i,1

i im i,1 im i,2

(n ) (n ) (n ) (n )

i im i im

1 2

e =y -x

e =y -x y -x

e = y -y y - ( , )

( , ,..., ) ( )

i i i

i N i

f x u

m x x x d t

=

=

− −

& & &

M                               (8) 

 

Use Eq. (6) to rewrite the above equation as: 
 

i(n )

i i0 i i im

1 2

iy i

e = A e +b {y - ( , )

( , ,..., ) ( )}

e e

i i i

i N i

T

i

f x u

m x x x d t

C




− −
 =

&

                          (9) 

 
where, Ai0 and bi are defined below: 
 

[ ]

i0

i

0 1 0 0

0 0 1 0

 A =

0 0 0 1

0 0 0 0

b 0 0 1

i i

i

n n

T n

R

R

×

 
 
 
  ∈
 
 
  

= ∈

L

L

M M M O M

L

L

L

                            (10) 

 
To construct the controller, we define the signal vi 

as: 
 

i(n ) T

i im ic i
ˆv =  y + k e

i
v ′+                             (11) 

 

Consider the vector 
i

T

ic i,1 i,2 i,n
k  = [k , k , . . . , k ]  be 

coefficients of i

i

n -1

i,n i,1
( ) +k s +...+kins sψ =  and chosen 

so that the roots of this polynomial are located in the 
open left-half plane. This makes the matrix 

T

ioc i0 i ic
A =A - b k

 
be Hurwitz.  

By adding and subtracting the term ( )T

ic i
ˆk e

i
v ′+

from the right-hand side of Eq. (9), we obtain: 
 

T

i0

1 2

T

iy i

ˆe =  A e -b k e -b { ( , )

( , , . . . , ) ( ) + }

e = C e

i i i ic i i i i i i

i N i i

i

f x u v

m x x x d t v

 −


′+ +



&
         (12) 

 

Using assumption (1), Eq. (11) and the signal vi 
which is not explicitly dependent on the control input ui, 
the following inequality holds: 
 

( ( , ) ) ( , )
0i i i i i i i

i i

f x u v f x u

u u

∂ − ∂
= >

∂ ∂
             (13) 

 
Invoking the implicit function theorem, it is obvious 

that the nonlinear algebraic equation ( , ) 0
i i i i
f x u v− =  is 

locally soluble for the input ui 
for an arbitrary 

i i
(x , v ) . 

Thus, there exists some ideal controller *

i i i
u (x , v ) 

satisfying the following equality for a given
in

i i
(x , v ) R × R∈ : 

 
*

( , ) 0i i i if x u v− =                (14) 

 

As a result of the mean value theorem, there exists a 
constant λ in the range of 0 < < 1λ , such that the 

nonlinear function 
i i i

f  (x , u ) can be expressed around 

ui
*

 
as: 

 

i

* *

i i i i i i i i iu

*

i i i u iu

f (x , u ) = f (x , u ) + (u -u )f

f (x , u ) + e f

λ

λ
=

             (15) 

 

where, 
 

i iiu i i i i u =u
f = f  (x , u )/ u |

λ λ
∂ ∂ and *

i i i
u = u  + (1 - )uλ λ λ  

 

Substituting Eq. (15) into the error Eq. (12) and 
using (14), we get: 
  

T

i0

1 2

T

iy i i

ˆe =  A e -b k e -b { +

( , , . . . , ) ( )}

e = C e

i i i i c i i iu iu i

i N i

e f v

m x x x d t

λ
′


+ +




&

            (16) 

 

However, the implicit function theory only 
guarantees the existence of the ideal controller 

*

i i i
u (x ,v ) for system (14) and does not recommend a 

technique for constructing a solution even if the 
dynamics of the system are well known. In the 
following, a fuzzy system and classic controller will be 
used to obtain the unknown ideal controller. 

The output of the system can be rewritten as 

( ) ( )Ty x w x θ=
 

where 1 2 ... My y yθ  =    is a vector 

grouping all consequent parameters and 

1 2
( ) [ ( ) ( ) ... ( )]T

M
w x w x w x w x=  

is a set of fuzzy basis 

functions. 
 

OBSERVER BASED FUZZY ADAPTIVE 
CONTROLLER DESIGN 

 
In previous Section, it has been shown that there 

exists an ideal controller for achieving control 
objectives. Here, we show how to develop a fuzzy 
system to adaptively approximate this ideal controller. 
This section deals with an observer based controller 
designed appropriately for the system given in Eq. (12).  

The following nonlinear observer is proposed for 

the system (12): 

 

io c

T

i0 ic i0

A

T

iy

ˆ ˆe =  (A -b k ) e + K

ˆ( , )

ˆ ˆe = C e

T

i i i i

T

i in o i i i i

i i

C e

b k e e C e





+




& %
14243

% %
             (17) 
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where, ,
io ino

K k
 

are respectively the linear observer 

gain and the nonlinear observer gain. Kio 
is selected to 

make sure that the characteristic polynomial of 

ioo io i0
(A =A -K )T

i
C

 
is Hurwitz. Defining the observation 

error ˆ
i i i
e e e= −%  and subtracting (16) from (17) yields: 

 

i0 i0

1 2

T

iy

e = (A -K ) -b { ( )+

ˆ( , , ..., ) ( , ) }

e =C e

oo

T

i i i i iu iu i i

A

T

i N ino i i i i

i i

C e e f d t v

m x x x k e e C e

λ
′+ +

+ +

&% %
1442443

% %

% %

(18) 

 

The output error dynamics of above equation can be 

written as: 
 

iy 1 2
e = ( ){ ( , , ..., )

ˆ( )+ ( , ) }

i iu iu i N

T

i i ino i i i i

H s e f m x x x

d t v k e e C e

λ
+

′+ +

%

% %
        (19) 

 
where Hi (s) is defined by: 
 

( )-1
T

i0 i0
H (s)=  - C sI-(A -K ) b

T

i i i i
C          (20) 

 

Hi (s) is a known stable transfer function. In order 

to use the SPR-Lyapunov design approach, Eq. (19) is 

rewritten as: 
 

iy 1 2e = ( ) ( ){ ( , , ..., )

ˆ( )+ ( , ) }

i i iu iu f if N

T

if if inof i i i i

H s L s e f m x x x

d t v k e e C e

λ
+

′+ +

%

% %
(21) 

 

where, 1( )iu f i iuf L s f
λ λ

−= , 1( )
inof i ino

k L s k−= , 1( )
if i i

v L s v−′ ′=

, 1( ) ( ) ( )
if i i

d t L s d t−= . Li (s) is chosen so that Li (s)
-1

  

becomes a proper stable transfer function and 

( ) ( )
i i

H s L s is a proper Strictly-Positive-Real (SPR) 

transfer function. We define as 
m m-1

i i1 im
L (s)=s  + b s  +  + b  L  with m = n - 1. 

The state-space realization of (21) can be written as: 
 

is is

T

1 2 i

T

iy is is

e =  -b { ( )+

ˆ( , , ..., ) ( , ) C }

e = C e

fio o is iu iu if if

if N in o f i i is

A e e f d t v

m x x x k e e e

λ
 ′+


+ +



&% %

% %

% %

(22) 

 

where, 
1

[1 ... ]T
is i im

b b b=  and [1 0...0]T
is

C = . 

The ideal controller can be represented as: 
 

*
( )i i iu f z=                 (23) 

where, [ , ]T
i i i

z x v=
 
and *

1 1
( ) ( )

i i i i i iu
f z w zθ ε= +  and 

*

1iθ  and 
1
( )

i i
w z  are consequent parameters and a set of 

fuzzy basis functions, respectively. εiu 
is an 

approximation error that satisfies 
maxiu

ε ε≤  and 

max
0ε > . The parameters *

1iθ  are determined through 

the following optimization: 

1

*

1 1 1
arg min sup ( ) ( )

i

T

i i i i
w z f z

θ
θ θ = −              (24) 

 

Denote the estimate of *

1iθ  as 
1i

θ
 

and uirob as a 

robust controller to compensate for approximation error, 

uncertainties, disturbance and interconnection term. To 

rewrite the controller given in (23) as: 

 

1 1 2 i0
ˆ( ) K

T T

i i i i irob i iu w z u e Pθ= + +              (25) 

 

Consider ( ) ˆT T

ij js js ij sj js j
C e C e xξ η=% %

 
and then 

define uirob 
by: 

 

0

min min

2

1

min m in

1

min m in

ˆ
( )(

2

1
ˆ ˆ

2

ˆ ˆ ˆ ˆ( , )( ))

T T i

irob is is is is

N T ir

ij j is is icomj

T

is is Ti

inof i i i i i

N
u sign C e C e

f f

u
x C e u

f f

C ev
k e e e P b

f f

ξ

η
=

= +

+ + +

′
+ + +

∑

% %

%

%
%

    (26) 

 

In the above, equation 
1 1 ( )T

i iw zθ  approximates the 

ideal controller, 
2

0 1

1ˆ ˆ ˆ
2

N T

i ij j is isj
x C eξ η

=
+ ∑ %  tries to 

estimate the interconnection term, uicom 
compensates for 

approximation errors and uncertainties, uir is designed to 

compensate for bounded external disturbances, 

m in 1
ˆ ˆ ˆ( , )( ))T T

inof i i is is i i i
k e e C e f e P b+% %  tries to estimate 

the nonlinear gain of the observer and ˆ
i

v ′  is estimation 

of vi'. Define error vector *

1 1 1i i i
θ θ θ= −%  and use (25) and 

(26) to rewrite the error Eq. (16) as: 

 

T

i i0 i i ic i i 1 1 i

1 2 i

T

iy i i

ˆe = A e -b k e -b {( ( )

) ( , , ..., ) ( )+ }

e =C e

T

i i irob

iu iu i N i

w z u

f m x x x d t v
λ

θ

ε

 +
 ′− + +



%&

(27) 

 

Based on Eq. (25) and (26), the state-space 

realization of Eq. (22) can be written as: 

 

is is 1 1

T

iy is is

e =  -b {( ( ) )

ˆ( )+ ( , ) }     

e =C e

f

T

ioo is i i i irob iu iu

T

if if ino f i i i i

A e w z u f

d t v k e e C e

λ
θ ε + −

 ′+ +



& %% %

% %

% %

(28) 

 

Assume that Pi1 
and Pi2 are respectively positive 

definite solutions of the following matrix equations: 

 

1 1 1

2 2 2

1

T

ioo i i ioo i

T

ioc i i ioc i

T

is i is

A P P A Q

A P P A Q

b P C

+ = −

+ = −

=

                            (29) 
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In Eq. (29), Qi1 and Qi2 
are some properly chosen 

positive definite matrices. 

Now, consider the following update laws: 

 

0

2

i 2 i

min

1 1 1

0

min

2

min

ˆ

ˆ ˆ( )

( )

ˆ

ˆ ˆ
2

ˆ

i

ji

ir

icom

i

T

is is T T

ino iko is is i

T

i is is i i

T

i is is

T

ji is is i

T

ir u is is

T

icom u is is

T

i v is is

C e
k C e b P e

f

C e w z

C e
f

C e x
f

u C e

u C e

v C e

ξ

η

γ

θ

γ
ξ

γ
η

γ

γ

γ ′

= +

= Γ

=

=

=

=

′ =

%&
%

& %

&
%

& %

%&

%&

& %

   (30) 

 

where, 
ˆ1 1

0, , , , , 0
ir ji icom i

T

u u v ikoηγ γ γ γ γ′Γ = Γ > >  are constant 

parameters. 

To pursue further, the establishment of the 

following lemma is needed. 

 

Lemma 1: The following inequality holds if: 

 

m
max 1 max 1

min

( ) ( )d
i i

f
Q P

f
λ λ≥ −  

 

1 12

1
0f

f f

iuT T

is i is is i is

iu iu

f
e Q e e P e

f f

λ

λ λ

+ ≥
&

% % % %              (31) 

 
where, λmax(.) 

and σmax(.) 
are maximum eigenvalue and 

maximum singular value, respectively. 
 

Proof: Refer to Ghasemi et al. (2009). 

 
Lemma 2: Based on lemma (1) and Eq. (34), the 
following inequality holds: 
 

max
min

( )
2

dm
ioo

f
A

f
σ ≤−                             (32) 

 
Proof: Refer to Ghasemi et al. (2009). 
 
Theorem 2: Consider the error dynamical system given 
in (17) and (28) for the large scale system (1) satisfying 
assumption (1), interconnection term satisfying 
assumption (3), the external disturbances satisfying 
assumption (4) and a desired trajectory satisfying 
assumption (2), then the controller structure given in 
(25), (26) with adaptation laws (30) makes the tracking 
error and the observer error converge asymptotically to 

the origin and all signals in the closed loop system 
bounded. 

 

Proof: Consider the following Lyapunov function: 

 

0

1

1 2 1 1 1

1

2
2 2 22 2

10

ˆ

1 1
ˆ ˆ(

2

)

f

i ji ir icom i

N
T T T

is i is i i i i i

i iu

N

jiji icom inoir i

u u iko v

V e P e e P e
f

u ku v

λ

ξ η

θ θ

ηξ
γ γ γ γ γ γ

−

=

=

′

= + + Γ

′
+ + + + + +

∑

∑

% %% %

% %% %% %
(33) 

 

where, *

1 1 1i i i
θ θ θ= −% , 

maxir ir
u u d= −% , 

maxicom icom
u u ε= −% , 

ˆ
ino ino ino

k k k= −% , ˆ
ji ji ji

η η η= −% , 
0 0 0

ˆ
i i i

ξ ξ ξ= −%  and ˆ
i i i
v v v′ ′ ′= −% . 

After some manipulation on the time derivative of the 

Lyapunov function, we have: 

  

1 1

1

2

1

2

1
ˆ ˆ

2

f

N
T iu

is i i i s

i iu iu

T

i i i

f
V e Q P e

f f

e Q e

λ
=

 
≤ − + 

 

−

∑
&

& % %

 

(34) 

 

Use lemma (1) and easily show that 0V ≤& . Using 

Barbalat's lemma, it is guaranteed the convergence of 

both the tracking error and the observer error 

asymptotically to the origin. Furthermore, the 

boundedness of the coefficient parameters is guaranteed. 

This completes the proof Q.E.D. 

 

SIMULATION RESULTS 

 

In this section, we apply the proposed observer 

based decentralized fuzzy model reference adaptive 

controller to the following large scale system: 

 

11 12

12 11 1 21

1

1 11

21 22

22 1 11 21

2

2 21

sin( ) 50 tanh( ) 4 sin( )

( )

40 tanh( ) sin( ) 6 sin( )

( )

x x

x x u x

d t

y x

x x

x u x x

d t

y x

=
 = + +


+
 =

=
 = + +


+
 =

&

&

&

&

    (35) 

 

It has been considered that the desired value of the 

outputs are 
1

0.5 sin(2 ) 0.5 sin(4 )
m

y t tπ π= +  and 

2
0.5 sin(4 ) 0.5 sin(6 )

m
y t tπ π= + . Furthermore, it 

is assumed that 
1
( ) 0.3 sin(100 )d t tπ=

 
and 

2
( ) 0.5 sin(120 )d t tπ= . 
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Fig. 1: Performance of the proposed controller in first 

subsystem 

 

 
 

Fig. 2: Performance of the proposed controller in second 

subsystem 

 

 
 

Fig. 3: The estimation of the first state of the first subsystem 

and the desired value 

 

Now we applied the proposed controller defined in 

(30), (31) to the system defined in Eq. (35). Based on 

the experts’ knowledge, let to define  

1 2 1 2[ , ] , [ , , ]
T T

i i i i i i ix x x z x x v= =
 

and the states of 

the subsystems are in the range of [5, -5], furthermore vi 
are defined over [-45, 45]. For each fuzzy system input, 

we define 6 membership functions over the defined sets. 

Consider that all of the membership functions are 

defined by the Gaussian function: 

 

2

2

( )
( ) exp( )

2
j

cχ −
µ χ =

δ
 

 
 

Fig. 4: The estimation of the first state of the second 

subsystem and the desired value 

 

where c is center of the membership function and � is its 

variance. We assume that the initial value of 
1
(0)

i
θ ,

0
ˆ (0)
i

ξ , ˆ (0)jiη  , (0)
ir

u , (0)
icom

u , ˆ (0)
ino

k  and ˆ (0)
i

v ′  be 

zero. Furthermore, it has been assumed that 
min

1f = , 

1
10Γ = , 

0
2, 2

i ijξ ξγ γ= = , 5
comu

γ = , 5
ru

γ = , ˆ 2
iv

γ ′ =  

and 10
iko

γ = . In addition, we assume that 0.01ε = . 

The parameters 
min

,
dm
f f  and the vector kic 

has been 

chosen so that lemma 2 hold.  

In Fig. 1 and 2, it is obvious that the performance of 
the proposed controller is promising. Furthermore, in the 

presence of ( )
i

d t  and
iu

ε , it is evident the controller has 

still a very promising performance while it is robust 
against both uncertainties and disturbances. Figure 3 
shows the estimation of the first state of the first 
subsystem with their desired values given in Eq. (17). 

The performance of the proposed observer on the 
second subsystem and their desired trajectories is shown 
in Fig. 4. 

In Fig. 3 and 4, it is obvious that the nonlinear state 

observer can generate the estimated states and perform 

exactly. Moreover, it is also clear that the output of the 

system converge to the desired value. The stability of 

the closed loop, the convergence of the tracking error 

and the observer error to zero and robustness against 

external disturbance and approximation error are the 

merits of the proposed controller and observer. 

 

CONCLUSION 

 

A new observer based decentralized fuzzy adaptive 

state tracking controller for a class of large scale non-

affine nonlinear systems is presented while the 

interconnections and the functions of the subsystems are 

unknown. Both the proposed controller and the designed 

observer guaranty the stability of the total closed-loop 

system and asymptotic convergence of the tracking and 

observer errors to zero. Robustness against external 

disturbances and approximation errors, relaxing the 

conditions and using knowledge of experts are the 

merits of the proposed controller.  
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