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Research Article 
Cooperative Spectrum Sensing Performance-overhead Tradeoff in Cognitive Radio 

Network under Bandwidth Constraint 
 

Israna Hossain Arka, Musab Ahmad Mohammad Al-Tarawni and J.S. Mandeep 
Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built 

Environment, Universiti Kebangsaan Malaysia, 43300 Bangi, Selangor, Malaysia 
 

Abstract: In cognitive radio network unlicensed users continuously scan a vast range of frequencies to detect ‘white 
spaces’ or ‘spectrum holes’ that are temporarily and spatially not being used for communications by licensed user 
and this process is known as spectrum sensing. In order to execute the cooperative spectrum sensing among 
cognitive radio users, data fusion schemes are superior to that of decision fusion ones in terms of the detection 
performance but suffer from the disadvantage of huge traffic overhead when bandwidth constraint of 
communication channels is taken into account. In this study, a cluster-based data and decision fusion approach is 
implemented to jointly exploit the advantages of both and a selective optimal weight setting algorithm is proposed 
by utilizing normal and modified deflection coefficients maximization under Neyman-Pearson criterion in order to 
obtain a final decision about the presence of primary users. The simulations show promising results as the novel 
hybridization process visibly reduces the network traffic overhead while exhibiting a highly satisfactory detection 
performance in CRN. Impairments in wireless network environment like shadowing, fading and noise uncertainty 
are also taken into consideration while optimizing performance of proposed model. 
 
Keywords: Cooperative sensing, data fusion, decision fusion, deflection coefficient, selective weight 

 
INTRODUCTION 

 
The static spectrum policy is failing to cope up 

with the ever increasing spectrum demands by mobile 
and wireless applications and guarantee desired Quality 
of Service. Moreover, current studies show that some 
frequency bands in the spectrum are heavily congested 
while other bands are largely unoccupied most of the 
time (Commission, 2002). The Cognitive Radio (CR) is 
proposed as a key technology to dynamically allocate 
the spectrum bands (Haykin, 2005). CR is inherently 
able to adaptively and opportunistically transmit and 
receive data in a changing radio environment and share 
the temporarily and spatially available wireless channel 
with licensed users as long as the Primary Users (PUs) 
are not interfered with. The CR users are classified as 
Secondary Users (SUs) with lower priority than the PUs 
who are obviously, licensees, or alternatively, users of 
existing technologies on unlicensed bands. The 
fundamental requirement for SUs is to exploit an 
efficient Spectrum Sensing (SS) technique that can 
reliably monitor the PUs’ activities and quickly vacate 
the band once a PU attempts to use that. It is thus 
necessary to invent a fast and highly robust algorithm to 
determine whether a frequency band is available or 
being occupied. This is the area of SS for CR. 

Many substantial researches are going on to 
improve the SS performance. By its very nature as a 
soft fusion scheme, an optimal linear operation 
framework for SS in order to accurately detect the weak 
PU signal is presented in Niu and Varshney (2005) 
whereas optimal weighting solutions are provided for 
fusing the individual sensing data coming from each 
cooperative node in Zhang et al. (2008). Associated 
with channel sensing the higher the ��, the better PU 
can be protected and on the other hand, the lower the Pf, 
the more chances the channel can be reused. Peh and 
Liang (2007) and El-Saleh et al. (2009) showed that the 
achievable maximum �� under a targeted �� and the 

minimum achievable ��  under a targeted �� could be 

achieved by cooperating an optimum number of users 
with the highest PU’s SNR rather than cooperating all 
users in the network.  

In Van and Koo (2009) decision fusion methods 
worked well in reporting channels experiencing 
Rayleigh fading, shadowing and Additive White 
Gaussian Noise (AWGN) but there is still some 
performance loss due to hardening the decisions 
depending on only single threshold value and therefore, 
suffer from significant loss of information. Meanwhile, 
Li and Li (2011) investigates the soft combining based 
CSS performance in more actual occasion of both 
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imperfect sensing channels and reporting channels by 
using the modified deflection coefficient that maximize 
the detection probability for a given false alarm 
probability. In El-Saleh et al. (2010), a deflection 
coefficient based hybrid SDF-HDF CS clustering 
scheme is proposed to exploit the advantages of 
reduced overhead of HDF and the superior detection 
performance of SDF.  

Chen et al. (2010) proposes an optimal CSS 

scheme based on linear coherent Multiple Access 

Channel (MAC) in CR to maximize the sensing 

performance under the interference temperature 

constraint. In MAC, the channel is modelled as a 

coherent sum of signals sent by users, hence precise 

synchronization between FC and SUs demands lots of 

feedback channels and consumes large bandwidth. To 

overcome this problem, in Chen and Zhang (2010) a 

CSS scheme based on linear Parallel Access Channel 

(PAC) is proposed to maximize the sensing 

performance by searching the optimal number and set 

of SUs in cooperation and controlling their weighting 

coefficients. Calculating optimal weighting coefficients 

may not be always affordable due to high 

computational complexity. In order to obtain weighting 

coefficients with reduced computational complexity, 

maximization of deflection criteria can be used as in 

Jamali et al. (2011).  

All the papers studied generally stressed on 

detection performance optimization of CR, where only 

a few of them discussed about the communication 

overhead for deploying such system. In real 

communication environment, there is a bandwidth 

constraint regarding information sharing among CRs to 

make a correct detection of PU. Many current SS 

algorithms do not meet these requirements. In our 

paper, we jointly explore performance optimization as 

well as overhead reduction under bandwidth constraints 

in CRN. Hence, this study is proposing a novel Cluster-

based Cooperative SS (CCSS) scheme to improve 

detection performance by maximizing selective 

weighted deflection coefficients with respect to 

overhead reduction by limiting cooperation among only 

a certain number of potential SUs. 

The following section contains system deployment 

and mathematical assumptions. Performance of 

proposed SS scheme with existing Maximal Ratio 

Combining (MRC) and Equal Gain Combining (EGC) 

based data fusion schemes as well as OR-rule based 

decision fusion scheme is then assessed through 

simulations utilizing signals derived from the proposed 

mathematical model. 

 

MATHEMATICAL MODELLING 

 

For a cognitive ad hoc network, cluster based 

architectures are promising to reduce congestion in 

channel  access  by  separating  local and remote  traffic 

Table 1: Potential combinations of data and decision fusion 

Fusion 1 2 3 4 

Intra-

cluster 

Decision Weighted 

data 

Selective 

weighted data 

Selective 

weighted data 
Inter-

cluster 

Decision Weighted 

data 

Weighted data Decision 

 

(Hossain et al., 2009). We assume that geographically 

nearby SUs are grouped into a cluster governed by a 

Cluster Head (CH), while each SU serves as relay in the 

sense that they receive different versions of a probable 

PU transmission and N CHs of the N clusters report 

their decisions to a common Base Station (BS). A 

Cluster-based Cooperative Spectrum Sensing (CCSS) is 

used to improve the detection reliability and realize a 

space diversity scheme to tackle hidden terminal and 

channel attenuation problems.  

CSS is performed on a hierarchical architecture 

through two levels of user cooperation. The low-level 

cooperation is carried out within each cluster (intra-

cluster) while the high-level one is accomplished 

outside the cluster among the CHs (inter-cluster). 

After receiving a signal from PU over a decision 

interval, each SU calculates the observation energy 

using selective weighted-data fusion at CHs amplifies it 

under transmission power constraint and sends the 

aggregated result to FC/BS through a common 

reporting channel for a final decision to be taken by 

data or decision fusion. Data fusion is employed 

followed by decision fusion. The justification is that 

once the decision is taken by each SU, all the sensing 

information will be lost. 

To obtain final decision about the presence of PU, 

we present few possible fusion methods as shown in 

Table 1. According to fusion 1, when the channels are 

of stringently limited bandwidth, both intra-cluster and 

inter-cluster cooperation are required to be 

implemented in HDF at the cost of severe performance 

degradation. Fusion 2 and 3, where both intra-cluster 

and inter-cluster cooperation are implemented in SDF, 

are expected to show the best detection performance 

among these.  

However, according to the traffic overhead analysis 

by El-Saleh et al. (2010), if each SU transmits its real 

values to FC, theoretically, infinite bits are required 

resulting in a very wide bandwidth, especially when M 

and N are large and will eventually incur huge 

overhead. Hence, these methods are appropriate only 

when the control and reporting channels are of ample 

bandwidth. Fusion 4 shows a fair balance between 

performance and overhead since SDF and HDF are both 

used to obtain the final decision at BS. 

Now justification for proposal of fusion 3 and 4 

using selective weight comes into focus. If every SU 

transmits the real value of its observation using SDF, it 

will result in a large demand of communication 

bandwidth on the reporting channel, which is 

practically not feasible. Even when the HDF schemes 



 

 

Res. J. App. Sci. Eng. Technol., 6(23): 4499-4505, 2013 

 

4501 

are adopted at FC, a large number of SUs still yields the 

total number of sensing bits transmitted to FC 

prohibitively huge. The consumption of system 

resources, e.g., the total transmission power of the 

cooperative SUs and the amount of overhead traffic in 

the CRN, grows approximately linearly with the 

number of SUs. To solve this problem, we propose a 

selective DCM weighting where only sensing 

information of a particular SU contributing to the 

largest optimal weight (NDC or MDC) inside each 

cluster is used in data fusion at FC. This will 

significantly reduce the traffic overhead over reporting 

channel since apparently only N users are sending their 

observations to FC instead of M *N.  

Moreover, shadow fading is correlated for closely 

spaced SUs; hence, it is desired to select SUs that are 

sufficiently spatially separated (Hu and Blum, 2001). 

Hence, sensing reliability may be degraded for this 

cluster-based scheme if one cluster contains too many 

close CUs. To solve this problem, the proposed 

selective weighting scheme can be regarded as an 

optimal solution without any loss of reliability of 

detection performance. However, fusion 4 is supposed 

to render slight degradation in performance compared 

to fusion 3 since we used OR-rule for decision fusion in 

inter-cluster cooperation. 

 

PROBLEM FORMULATION 

 

Figure 1 shows the proposed general deployment 

of the CRN with three main sequential links: the PU-

SU link, the SU-CH link and finally the CH-BS link, 

termed as sensing channel, control channel and 

reporting channel respectively.  

In order to formulate a practical CCSS model for 

CRN we assume both the signal and the noise to be 

Wide Sense Stationary (WSS) over sufficient time 

intervals to perform detection, to have circularly 

symmetric Gaussian distributions (zero relation matrix 

and zero mean) and be statistically independent of each 

other. The density function depends only on the 

magnitude but not on the argument. As such, the 

magnitude of standard complex normal random variable 

will have the Rayleigh distribution and the squared 

magnitude will have the Exponential distribution, 

whereas the argument will be distributed uniformly on 

[-π, π].  

The channel gains are also assumed independent of 

each other, known and constant over each sensing 

period. This can be justified by the slow-changing 

nature over the link where the delay requirement is 

short compared to the channel coherence time that is 

also called the quasi-static scenario (Hoven et al., 

2005). Now we represent the general notations used in 

this study: 

 

 
Fig. 1: Deployment of cluster-based CSS in CRN 

 
CN~N (0,��) = Circularly symmetric complex Gaussian 

distribution with zero mean and 
variance �� �� and �	 =  PU is absent and present separately 

n = 1, 2, …, K; K is the number of samples 
of the received signal  

i = 1, 2, …, M; M is the number of 
cooperative SUs per cluster  

j = 1, 2, …, N; N is the number of CHs in 
CRN �
� =  Transmit power of the i

th
 SU 

xi [n] =  Received sampled signal at the i
th

 SU  
S[n] =  PU transmitted signal with CN~N 

(0, ���)  

Wi[n] =  i
th

 sensing channel noise (AWGN) with 

CN~N (0, ��� ) 
Ni[n] =  i

th
 control channel noise (AWGN) with 

CN~N (0, ���� ) 
gi , hi, lj = Sensing, control and reporting channel 

gain respectively, which accommodate 
any uncertainty such as multipath 
fading, shadowing and propagation path 
loss  

 
Characterization of sensing channel: The observed 
signal at the i

th
 SU is usually represented as a binary 

hypothesis test: 
  ��  [�|��] = ��[�]                                                   (1) 
 ��  [�|�	] = ���[�]  + ��[�]                                    (2) 
 
The corresponding energy observed at i

th
 SU is: 

   �� =  ∑ |��[�]|����	                                    (3) 
 
Characterization of control channel: Now each SU, 
serving as relays in an Amplify-And-Forward (AAF) 
manner, transmit their individual energy 
measurements of PUs’ signal, ��, to the j

th
 

corresponding CH through a dedicated control 
channel with a weighting factor �� under transmit 
power constraint in an orthogonal manner.  
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The signal received by corresponding j
th

 CH 
from the i

th
 SU is: 

  � = ��(�
�  ℎ��� + #�)                                       (4) 
 
ωi≥0 satisfying ‖�&&'‖ = 1, which is used to optimize 
the detection performance.  

The weighting factor for the signal from a 
particular SU represents its contribution to the cluster 
decision. For example, if a SU signal generates a high 
deflection coefficient that may lead to correct detection 
on its own, it should be assigned a larger weight. For 
those SUs experiencing deep fading or shadowing, their 
weights are decreased in order to reduce their negative 
contribution to the decision fusion.  

 
Weighted data fusion at cluster head: Next all 
individual test statistics from M SUs are used to linearly 
formulate the resultant test statistic of the j

th
 cluster, Zj, 

given as: 
 

Zj =∑ Y*+*�	                                                        (5) 
 

Since  �  is a linear sum of a large number of 
samples K of some independent signals, it follows a 
normal distribution according to the Central Limit 
Theorem with the mean and variance as follows: 
 ,�,�= 

	.∗� ∑ ∑ �����	 (�
�ℎ����.��	 + ���� ) = w1µ�              (6) 

 ,�,	= 	.∗� ∑ ∑ ����	 � [�
�ℎ�.��	 (����� + ��� ) + ���� ] = 2
,	    (7) 

 ��,�� = 3 ∑ ∑ ������	  .��	 (�
�ℎ���� + ���� )� = 2
 ∑ 2�           (8) 
 ��,	� =2∑ ∑ ������	  [�
�ℎ�(����� + ��� ) + ���� ]�.��	  = 2
 ∑ 2	  (9) 

 

Let, 
 ,� = 

	.∗� ∑ ∑ (�
�ℎ���� + ���� )���	.��	   
 ,	 = 

	.∗� ∑ ∑ [�
�ℎ�4����� + ��� 5 + ���� ] ���	.��	   

 ∑ =�  2 ∑ ∑ (�
�ℎ���� + ���� )����	  .��	  

 

 ∑ =	  2 ∑ ∑ [�
�ℎ�4����� + ��� 5 + ���� ] ���	.��	 �
 

 
Considering that global threshold at the CH is βj, 

the likelihood ratio is Zj ≷898:  
βj. As such, the overall 

probability of detection, Pd for the j
th 

cluster can be 
written as: 
 ��,; = �(Zj>βj|H1)= Q <=>?@ (A>|8:) BCDE (A>|8:) F= Q <=>?GHI: BGH ∑ G: F   (10) 

 
In CSS, the main metric of sensing performance is 

either minimization of ��  (high spectrum utilization) or 

maximization of the �� (low interference to PU), which 
can be hardly both reached since they are converse 

variables. In this study, we mainly maximize �� by 
controlling the weighting vector while meeting a certain 

requirement on the ��  under Neyman-Pearson criterion. 

Then for a given �� , �� can be written as: 

  ��,;  = Q <JK:4LMNNNN5BGH ∑ G9 O GH[I9?I: ]BGH ∑ G: F  

= Q <JK:4LMNNNN5BGH ∑ G9  – GHQ]BGH ∑ G: F                                            (11) 

 
Let, 
 R = 	.∗� ∑ ∑ �S�ℎ���	 �.��	 ����� T�U R = [R	, R�,…,R.]T 

 
Characterization of reporting channel: Assume that 
the reporting channel corresponding to the j

th
 CH is a 

Binary Symmetric Channel (BSC) with a probability of 
reporting error, �W,; and decision fusion rule is 

employed at the BS to make a global decision. The 
cluster decisions will be forwarded from N CHs to BS 
through dedicated reporting channels in an orthogonal 
manner. 
 
Decision fusion at base station: Using OR rule, it is 
shown that the global probability of detection, Qd, of 
the whole CRN are given by: 
 X�  = 1 – ∏ [41 − ��,;5(1 − �W,;[;�	 )  +  ��,;�W,;]     (12) 

 
Assume, for simplicity, all CHs of the reporting 

channel are similar to each other resulting in Pd,j = Pd 

and probabilities of reporting errors are identical (i.e., 

Pe) for all CHs, then: 

 X�  = 1 – [(1 − ��)(1 − �W) + ���W][              (13) 

 
When all reporting channels are perfect (i.e., no error): 
  X�  = 1 – (1 − ��)[                                             (14) 
 

PERFORMANCE OPTIMIZATION 
 

Calculating optimal ω vector will result in high 
computational complexity, which may not be always 
affordable. In order to set the ω with reduced 
computational complexity, Deflection Coefficient (DC) 
can be used as it is a good measurement of the detection 
performance and can be exploited for performance 
optimization. The Deflection Coefficient Maximization 
(DCM) based selective optimal weight setting scheme 
can be realized by the Normal DCM (NDCM) or the 
Modified DCM (MDCM). 

To measure the effect of the PDFs on the detection 

performance at CHs under hypothesis H0 and H1, NDC 

and MDC is introduced, respectively: 
 U��  =

[I\,:?I\,9]]
\̂,9]   = 

[GH(I9?I:)]]
\̂,9]   = 

 (GHQ)]
GH ∑ G9                      (15) 



 

 

Res. J. App. Sci. Eng. Technol., 6(23): 4499-4505, 2013 

 

4503 

U_�  =
[I\,:?I\,9]]

\̂,:]   = 
[GH(I9?I:)]]

\̂,:]   = 
 (GHQ)]
GH ∑ G:                   (16) 

 
Normalizing each weighting co-efficient, according 

to El-Saleh et al. (2010), we obtain the optimal 
weighting vector as: 
  ���`,[ab_b8∗  = ���`,[ab / ||���`,[ab|| = ∑ R?	�       (17) 

 ���`,.ab_b8∗  = ���`,.ab / ||���`,.ab|| = ∑ R?		      (18) 

 
The detection performance after performing data-

fusion at CHs is thus given according to (Hossain et al., 
2009):  
 

Pd,j(NDC) = Q dJK:4LMNNNN5eQH ∑ Q K:9 ? QH ∑ QK:9
eQH ∑ ∑ Q:K]9

f              (19) 

 

Pd,j(MDC) = Q <JK:4LMNNNN5BQH ∑ ∑ Q9K]:  ? QH ∑ QK::BQH ∑ QK:: F           (20) 

 

For a given ��g , Pd is maximized in the sense that 

the distance between the centers of two PDFs under 

hypotheses H0 and H1 is pushed apart from each other 

to the maximum by this weighting vector
 
���`∗  hence, 

detection performance is optimized. Finally, X� after 

performing decisionfusion at FC/BS are thus given as: 
 X�_hi = 1 – ∏ [41 − ��,;5(1 − �W,;[;�	 )  + ��,;�W,;]   (21) 

 

Performance evaluation of the proposed CRN: In 

this section, the proposed data weighting schemes 

performed at CH stages are first simulated and 

compared. Next, the proposed weighting of data and 

decision fusion methods in CSS scenarios, where the 

individual decisions reported by the CHs to the BS are 

combined using OR rule, is simulated and compared 

under different scenarios. The effect of varying M is 

observed as well as the effect of varying Pe of the 

reporting channels. The default sensing time and sensed 

bandwidth are set as Ts = 25 µs and B = 6 MHz, 

respectively. The relay transmit power is set to 12 dBm 

and the channel gains are {gi}, {hi} and {li} of the 

sensing, control and reporting channels respectively and 

are normally distributed but remain constant within 

each sensing interval Ts, as Ts is sufficiently small. The 

simulation results are obtained from 10^5 realizations 

of channel gains and signal and noise variances and 

then the ROC curves are averaged. 

 

Evaluation of intra-cluster CSS at CHs: By plotting 

Pd vs. Pf at the CH of single cluster, ROC curve is 

obtained as in Fig. 2 to observe and compare the overall 

effect of various weight-setting algorithms used in 

weighted data fusion schemes at CHs.  
The Equal Gain Combination (EGC) based 

scheme, as  expected, is  inferior  to  all  weight  setting 

 
 

Fig. 2: Performance of various data fusion schemes at CHs 

 

 
 

Fig. 3: ROC curve for various no of users inside a cluster 

 
algorithms and shows poor performance due to fixed ��  assigned to the measurement of each SU at the CH, 
which can be same as in case of non-weighted scheme. 
It does not require any channel state information, but 
still exhibits much better performance than the 
conventional OR HDF.  

Another widely used weight based on SNR (MRC) 
gives a better ROC compared to that of EGC using the 
formulas in El-Saleh et al. (2010) due to its 
adaptability. Comparing the effects of DC 
maximization, it is observed that selective NDC is 
slightly better than that of MDC and both outperform 
conventional EGC and MRC. 

Since selective NDC gives us superior optimization 
performance than any other schemes compared, 
comparison of ROC under NDCM will be considered 
onwards. Next, we investigate the effect of varying the 
number  of cooperative SUs in a cluster as shown in 
Fig. 3. 

Obviously, performance improves well when M in 
the cluster increases. when M = 1, which is also 
equivalent to the case of non-cooperation, ROC curve is 
very near to the line of no discrimination, where there is 
no difference between signal and noise. This yields the 
worst result. As M increases, separation between the 
signal and noise increases and detection performance of 
ROC curve improves as well.  
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Fig. 4: Comparison of different fusion schemes at BS 

 

 
 
Fig. 5: Detection performance for different Pe at reporting 

channel 
 
Table 2: Traffic overhead analysis for different fusion schemes 

Hybrid scenario 

Number of bits 

transmitted over  

control channel 

Number of bits 

transmitted over 

reporting channel 

Fusion 1 M×N N 

Fusion 2 u×k×M×N u×k×M×N 

Fusion 3 u×k×M×N u×k×N 
Fusion 4 u×k×M×N N 

 

Evaluation of inter-cluster CSS at BS: Fusion 

methods in Table 2 are employed for 3 CHs consisting 

of 5, 15 and 30 SUs in each cluster respectively. Each 

fusion method performance is displayed together with 

the no of bits of overhead they incur. Fusion 1 based on 

OR rule and result in worst performance among these, 

but have the advantage of least traffic overhead. MRC 

based data fusion 2 shows the best result in case of 

performance comparison in Fig. 4. Our proposed 

selective optimal NDC based data fusion 3 shows a 

better result than MRC in low X�  region (until 0.02). As X�  goes higher, it shows a near-optimum result that is 

very close to MRC, For example, when X�  = 0.1, the 

ratio of 
Jj(klm)Jj(nopoqr\so tum) = 1.01. On the other hand, it has 

M times lesser overhead compared to MRC in support 

of negligible performance degradation. Furthermore, to 

reduce overhead in fusion 4 we deploy OR-rule 

followed by selective optimal NDC based data fusion. 

It shows a little more degraded performance than the 

previous 2, but greatly reduces bandwidth consumption. 

However, it is clear that performance of our 

proposed fusion 3 & 4 is still in acceptable margins and 

can be improved further by increasing no of cluster, N 

and/or choosing an optimal no of SUs inside a cluster, 

M. Figure 5 is simulated based on fusion 4 including 

different Pe in the reporting channel from 3 CHs to BS 

according to El-Saleh et al. (2010). 

As expected, the performance degrades as the 

reporting error increases. When Pe = 0, (13) reduces to 

(14) and thus the best result, i.e., highest Qd is achieved 

due to the error free reporting channel. As Pe increases, 

Qd  also decreases which in not desired.  

 

Traffic overhead analysis: Table 2 presents a traffic 

overhead analysis for the potential combinations as 

presented in Table 2. Consider that during a specific 

sensing interval each SU in a particular cluster 

quantizes K signal samples needs with u bits per sample 

resulting in transmission of u×k bits with data and only 

1-bit with decision to the corresponding CH. Now, we 

calculate the overhead traffic by the total number of bits 

that needs to be reported from each SU all the way to 

the BS in Table 2.  
It is clear that fusion 1 scenario offers the lowest 

overhead traffic, but unfortunately, the detection 
performance of HDF scheme is not as good as the 
fusion 2 as shown in Fig. 2 and 4. However, when M 
and N go large, using fusion 2 will lead to require large 
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bandwidth. Thus, fusion 3 scenario presents a balance 
between these two conflicting objectives; maximizing 
the detection performance and minimizing the overhead 
traffic. Using proposed selective optimal weighting 
algorithm, only 1 SU with the highest optimal weight is 
sending its sensing information to FC during inter-
cluster cooperation, so it is apprehensible that M is 1 in 
this case. Hence, a reduction of M times comparing to 
fusion 2 in case of data fusion is noticeable with only a 
little performance degradation. In fusion 4, decision 
fusion is made using OR-rule by further reducing no of 
bits to a great extent at the cost of a little more 
performance degradation compared to fusion 3, which 
is desired when there is a constraint on bandwidth 
availability on reporting channel. 
 

CONCLUSION 
 

The CSS is widely used in CRN in order to reduce 
the sensing time and the sensitivity requirements on an 
individual CR under destructive channel effects. In the 
proposed CCSS scenario, optimization of Pd is 
investigated with resorting to allocation of an optimal 
weight, by maximizing NDC and MDC, to individual 
cooperative SUs, but only a particular SU from each 
cluster having the highest optimal weight gets the 
opportunity to contribute to obtain the final decision 
about the presence of PU at BS. The performance of the 
proposed hybrid fusion scheme has been simulated and 
compared with other conventional schemes. Simulation 
also proved that performance degrades with increased 
reporting error. Finally, the presented traffic overhead 
analysis shows an excellent compromise between the 
detection performance and radio resources under 
bandwidth constraints when selective optimal NDC-
based weighted data fusion is used followed by OR-rule 
based decision fusion. By characterizing the tradeoff as 
an optimization problem, the approximation of optimal 
number of intra and/or inter clusters users can be 
obtained which can minimize the cooperation overhead 
without any performance loss of reliability. 
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