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Abstract: The classical Jacobi method is widely used for solving linear systems. This method is considerably time-
consuming to compute millions upon millions of linear equations. In this study, we design a novel FPGA-based 
Jacobi Solver. The kernel of the Jacobi Solver is a pipeline-friendly iteration algorithm which can eliminate the data 
dependence between iteration steps. This algorithm is suitable for pipeline-friendly hardware architecture. The 
experimental results show that the Jacobi Solver can solve more than 6.5 million of linear equations in one second 
and achieves up to 341x speedup compared to a single-thread CPU version. 
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INTRODUCTION 

 
With abundant computational resource being 

available, scientific computing are growing in size and 
complexity. Many scientific computing problems lead 
to the demand of solving large dimension linear 

systems, e.g., >10
7

(Young, 2003).  
Numerous methods have been proposed to solve 

linear systems, such as Direct Solution method, Jacobi 
method, Gauss-Seidel method, Conjugate Gradient 
method, Multigrid method and Saad and Van Der Vorst 
(2000). Among all these methods, Jacobi Method is 
relatively simple and independent of the numbering of 
the unknowns (Cavallaro and Luk, 1988). The obvious 
advantage seen was that rounding errors would not be 
accumulated, they are restricted to the last operation. 
However, Jacobi method is very time-consuming to 
compute millions upon millions of linear equations.  

Fortunately, Jacobi method has much more 
potential for parallelization. For example, O’Leary and 
White (1985) introduce a parallel scheme based on 
multi-splittings of the coefficient matrix and they prove 
the convergence of this method with some sufficient 
conditions on the coefficient matrix and on its splittings 
(Bru and Fuster, 1990). Morris and Prasanna (2005) 
implemented a FPGA-based single iteration of Jacobi 
method without considering convergence and achieved 
1.7x faster than CPU implementation in one iteration. 
Wang et al. (2009) present a GPU-based 
implementation of Jacobi method. Their experimental 
results show that the performance of GPU-based Jacobi 
method algorithm increases linearly along with the 
scale of matrix increasing and finally achieved 3x faster 
than Barrachina et al. (2008) GPU-based dense linear 

system.  
Our study also focuses on modifying Jacobi 

method to make it suitable for FPGA architecture. We 
design a FPGA-based Jacobi Solver which mainly 
includes a new pipeline-friendly iteration algorithm. 
The main idea of the pipeline-friendly iteration 
algorithm is eliminating the data dependence between 
iteration steps. To achieve this goal, we have to 
reconstruct the work flow of the classical Jacobi 
method with algorithmic transformations. After 
enabling pipeline of different computation stages, we 
finally implement the Jacobi Solver in hardware logic 
and successfully make it run on Vitex-6 SX475T 
FPGA. In order to evaluate the performance of our 
FPGA-based Jacobi Solver, we implement the other 
three different CPU-based Jacobi method solutions. 
These CPU-based solutions are all fully optimized. The 
Experimental results show that our FPGA-based Jacobi 
Solver is significantly faster than all CPU-based 
solutions. Our Jacobi Solver achieves a maximum of 
341x speedup over a single-thread CPU-based solution, 
115x speedup over a multi-thread CPU-based solution 
and 35x speedup over a MPI-based solution.  
 

MATERIALS AND METHODS 
 
Fundamental of Jacobi method: The Jacobi method is 
used to solve linear systems with matrix that without 
zeros along its main diagonal. Each diagonal element is 
solved for and an approximate value is plugged in. 
Referring to the expressions in Bronshtein et al. (1985), 
we given a system of n linear equations: 
  

bAx =                                (1) 
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where,  
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Then A can be decomposed into a diagonal 

component D and the remainder R:  

  

RDA +=                   (3)  
 

where,  
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The solution is then iteratively solved by:  

 

)( )(1)1( kk RxbDx −= −+

                 (5) 

 

The Eq. (5) can be converted into an element-based 

formula:  
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where, k is the iteration count. The �� will be computed 

iteratively until the solution x = (��, ��, … , ��)
  

reaches convergence. The condition for the 

convergence is that for a given precision ε, for example, 

ε = 10
-9

, it satisfies following condition:  

 

ε<
−

b

Axb k

                 (7) 

 

Based on Eq. (6), we write the pseudo-code of 

Jacobi method in Algorithm 1. Line 7 to Line 12 in 

Algorithm 1 continuously update component xi in 

current (k+1)
th

 iteration and δ in Line 9 is the 

accumulating result of ∑ ��
�


(�)

�� . When all 

components (��, ��, … , ��)
  for solution x are updated, 

the algorithm starts to check whether the result is 

convergence or not. If solution x = (��, ��, … , ��)
  

reaches convergence at the ��� iteration, then the 

iteration process will finish. Otherwise the algorithm 

starts next iteration step.  

It is obvious that there is data dependency between 
δ and �
 when new iteration starts. This kind of data 

dependency makes the classical Jacobi method 
impossible to be implemented in hardware logic 
(Weaver et al., 2003). We need to design a pipeline-
friendly algorithm for FPGA architecture. 
 
Algorithm 1: The Classical Jacobi Method: 
 
Choose an initial guess value x0; 
k = 0; 
Check if convergence is reached; 
While convergence not reached do 

for i: = 1 step until n do 
δ = 0; 
for j: = 1 step until n do 

if j ≠ i then  

δ = δ + ��
 �


(�)
;  

end if 
end for 

��

(���)
 = (�� - δ)/ ��� ; 

end for 
Check whether convergence is reached; 
k = k + 1; 

end while 
 
The target hardware: We use Maxeler’s MAX3 
Acceleration card to implement our engine system of 
Jacobi method. MAX3 acceleration card consists of one 
Vitex-6 SX475T FPGA and 24 GB DDR3 onboard 
memory. Figure 1 illustrates the architecture of our 
used Maxeler acceleration system. The host application 
runs on the conventional CPU and manages the 
interaction between the host and the FPGA accelerators. 
On the FPGA, kernels are the hardware designs 
implementing the arithmetic and logical computations 
needed within an algorithm. The manager is the 
collective term for the FPGA logic that orchestrates 
data flow between kernel and off-chip I/O.  

Dividing an application into kernels and a manager 
lets us separate computation from communication. This 
is beneficial because it enables deeply pipelined kernels 
without control flow constraints, which is key to 
achieving high performance. Managers use a streaming 
model for off-chip I/O to PCI Express and DDR3 RAM 
memory and are optimized to achieve high use of 
available bandwidth in off-chip communication 
channels, allowing kernels to run at peak performance 
(Lindtjorn et al., 2011).  

Additionally, the MAX3 acceleration card is also 
attached with a compiling platform named 
MaxCompiler provided by Maxeler Technologies. 
Using MaxCompiler, we only need to program the 
algorithm of Jacobi method    in Java and the MaxCom-
piler will compile and build the Java code into a 
configurable bitstream file through the Vendor’s CAD 
software that are integrated in MaxCompiler. The 
generated bitstream file can be loaded into Maxeler 
acceleration card at runtime.  
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Fig. 1: Architecture of maxeler acceleration card 

 
Design of FPGA-based Jacobi solver: In this section, 
we design a pipeline-friendly algorithm to eliminate the 
data dependence between iteration steps. We divide the 
complete large scale linear systems into blocks, in 
which one block consists of a small number of linear 
equations. All equations in one block will be 
simultaneously solved when the pipeline-friendly 
algorithm finishes iterations.  

We can see from Line 9 in Algorithm 1 that 

updating the δ value is one important step of Jacobi 

method. This step needs all components �
 (j = 1, 2, ···, 

n) that have been calculated in previous iteration. If we 

just simply migrate the step of updating δ to FPGA 

hardware logic, the computing process will fail because 

the calculation for �� needs to pass through a long 

pipeline stages in FPGA. When a new iteration step 

starts, a number of  �
 (j = k, k + 1, k + 2, ···, n) are still 

non-value. It will lead to an invalid updating for �.  
In order to solve the above problem, we reconstruct 

the classical Jacobi method to a pipeline-friendly Jacobi 
method which is shown in Algorithm 2. The main im-
provement of using block is solving a number of 
equations simultaneously during one iteration step, 
while the original method is only solving a single 
equation during one iteration step.  

We assume T FPGA clock cycles are needed 

before all components (��, ��, … , ��)
 are figured out 
for all the linear equations in a block. Before updating 
the δ value, we calculate every xi in parallel as 
following steps:  
 

• Step 1: In t1 cycle, the algorithm starts to calculate 

xi for the 1
st
 equation in block.  

• Step 2: In t2 cycle, the algorithm starts to calculate 

xi for the 2
nd

 equation in block. Meanwhile, it still 

process rest calculation on xi for the 1
st
 equation in 

block.  

• Step i: In ti cycle, the algorithm starts to calculate 

xi for the i
th

 equation in block. Meanwhile, it still 

process rest calculation on xi for previous i 

equations.  

Algorithm 2: The Pipeline-Friendly Jacobi Method: 
 

Choose an initial guess solutions ��
�, ��

�,…, ��

 to all 

equations in block; 
k = 0; 
check if all equations in block have reached 
convergence: 
while all equations in block have reached convergence 
do 

for t : = 1 step until T do 
�� = 0; 

end for 
for i : = 1 step until n do 

for t : = 1 step until T do 
for j : = 1 step until n do 

if j ≠ i then 

�� = �� + ��
 ��


(�)
; 

end if  
end for 

���

(���)
 = (��� − ��)/ ���; 

end for  
end for 

check whether T equations in current block have 
reached convergence; 
k = k + 1; 

end while 
 

After T FPGA clock cycles elapse, all components 

(��, ��, … , ��)
 for the 1
st
 equation are figured out. 

Therefore the updating for the first equation’s δ can be 
correctly performed in new iteration. When the second 
cycle starts in new iteration, all components 

(��, ��, … , ��)
 for the 2
nd

 equation are also figured out 
since it also has elapsed T FPGA clock cycles when 
calculation on xi for the 2

nd
 equation starts, so updating 

δ for the 2
nd 

equation can also be correctly performed. 
The process is the same for updating δ for other 
equations in block when following cycles start in new 
iteration.  

Using this pipeline-friendly Jacobi method, we can 
overlap multiple computing stages for updating δ and 
results in eliminating the data dependency between 
consequent iteration steps. This method is easy to be 
implemented by FPGA hardware logic.  

Since Algorithm 2 needs to solve T equations 
simultaneously during the iterations, we change the 

terms δ, ��, �
, �� in Algorithm 1 to  ��, ���, ��
 and ���  

in Algorithm 2 respectively, where:  
 

• �� is the corresponding  δ for tth equation in block.  

• ���  and ��
 are the corresponding component ��  and 

�
  respectively for tth equation in block.  

• ��� is the corresponding �� for tth equation in block. 
 

RESULTS AND DISSCUSSION 

 
We implement the pipeline-friendly Jacobi method 

on Maxeler MAX3 acceleration card with one Vitex-6
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Table 1: Performance comparison (solved equations per second) 

Data set ID Equation dimension Single-thread CPU version Multi-thread CPU version MPI version FPGA version 

1 2 2,031,034 3,100,000 271,428 6,544,444 

2 4 589,000 1,840,625 205,944 3,926,666 
3 8 313,297 879,104 146,517 2,945,000 

4 16 85,985 252,789 65,299 1,840,625 

5 32 29,129 81,578 47,576 1,682,385 
6 64 7,968 22,750 36,335 950,000 

7 128 1,786 4,869 28,816 463,779 

8 200 871 2,574 23,179 297,474 

 

Table 2:  Speedup result (FPGA-based solution V.S. CPU-based solutions) 

Data set ID Equation dimension FPGA v.s. single-thread CPU version FPGA v.s. multi-thread CPU version FPGA v.s. MPI version 

1 2 3x 2x 24x 
2 4 6x 2x 19x 

3 8 9x 3x 20x 

4 16 21x 7x 28x 
5 32 57x 20x 35x 

6 64 119x 41x 26x 

7 128 259x 95x 16x 
8 200 341x 115x 12x 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2: Speedup of FPGA v.s. other CPU versions 

 

SX475T FPGA. Using MaxCompiler software tool 

suites provided by Maxeler Technologies, we only need 

to program the pipeline-friendly Jacobi method in Java 

and the MaxCompiler will compile and build the Java 

code into a configurable bitstream file through the CAD 

software integrated in MaxCompiler. The generated 

bitstream file can be loaded into Maxeler acceleration 

card at runtime.  

For the purpose of comparison, three different CPU 

versions of Jacobi method including a single-thread 

CPU version, a multi-thread CPU version and a MPI 

CPU version are also developed and tested. All these 

versions are fully optimized in the C program language 

and compiled with the Intel Compiler configured at the 

O3 optimization level.  

The single-thread CPU version and multi-thread 

CPU version are deployed in a PC workstation with one 

2.93 GHz quad-core Intel i7 CPU and a 4GB DDR3 

memory. The MPI version is deployed over a 16-nodes 

cluster with Intel MPI Library configured at highest 

optimization level and each node powered by a 2.93 

GHz quad-core Intel i7 CPU and a 4 GB DDR3 

memory. Moreover, the MPI version is performed with 

64 processes. Here we run the MPI-based 

implementation in a limited number of processes only 

for simple reference purpose, rather than discussing the 

scalability of Jacobi method. The FPGA-based 

implementation is deployed over a Maxeler MAX3 

acceleration card with a Vitex-6 SX475T FPGA 

running at 175 MHz and 24 GB DDR3 onboard 

memory.  

All above four implementations of Jacobi method 

are tested according to eight datasets, which are 

generated randomly with different linear dimension 

from small to large. The linear dimension of eight 

datasets is 2, 4, 8, 16, 32, 64, 128 and 200, respectively. 

Limited by the quantity of hardware resources provided 

by Vitex-6 SX475T FPGA on one Maxeler MAX3 

acceleration card, the maximum linear dimension that 

Jacobi Sovler can solve is 200. If more hardware 

resources are available, the maximum linear dimension 

can be extended.  

Note that the amount of computation to be 

performed within Jacobi method is proportional to 

linear dimension. Therefore we keep the amount of 

linear equations at 1 million in every dataset for 

performance comparison.  

We present the number of processed equations per 

second for different versions in Table 1 and the speedup 

of FPGA version over other versions in Table 2. For 

simplification, we plot the Fig. 2 to compare the 

speedup in detail.  
As shown in Table 1, the average throughput of 

FPGA-based implementation is high. For two 
dimensions scenario, it can solve 6,544,444 equations 
in one second. For two hundred dimensions scenario, it 
still can solve about 297,474 equations in one second. 
These peak performance results are much higher than 
the other three CPU versions.  

As shown in Table 2, with the increasing of 

dimension in each dataset, the speedup is obviously 

keeping rising except MPI version. In our test cases, 

most of the best speedups are achieved on the largest 

dataset (i.e., two hundred dimensions scenario) with 
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341x speedup over the single-thread CPU version, 115x 

speedup over the M-CPU version. Comparing with the 

MPI-based solution, FPGA solution achieves maximum 

35x speedup when dimension is 32. When dimension 

increases to 200, the FPGA solution only achieves 12x 

faster than MPI-based solution. The main reason for 

this result is the time saved in computation process is 

greater than time consumed in the overhead of forking 

64 MPI processes. Our studies in this case are still 

limited to the number of MAX3 card. If more MAX3 

cards are available, we can compare multi-FPGA 

version with MPI version further.  

The pipeline-friendly Jacobi method enables us to 
deploy sufficient FPGA functional units and is easy to 
be implemented in deep pipeline FPGA hardware logic. 
Furthermore, if more hardware resources on FPGA 
platform being available, we can deploy more than one 
pipeline for this pipeline-friendly Jacobi method in 
FPGA which will result in further acceleration.  
 

CONCLUSION 
 

This study presents Jacobi Solver, a fast FPGA-
based design of Jacobi Method. It is useful to solve 
large-scale linear systems. We design a pipeline-
friendly Jacobi method, which eliminates the data 
dependency between iterations and make Jacobi method 
not only successfully be implemented with FPGA 
hardware logic, but also achieve significant 
acceleration. Our experimental results show that Jacobi 
Solver is more efficient than other CPU versions 
significantly.  
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