
Research Journal of Applied Sciences, Engineering and Technology 6(23): 4459-4463, 2013

DOI:10.19026/rjaset.6.3452

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2013 Maxwell Scientific Publication Corp.

Submitted: March 01, 2013 Accepted: March 14, 2013 Published: December 15, 2013

Corresponding Author: Huabin Ruan, Department of Computer Science and Technology, Tsinghua University, Beijing,

100084, China
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

4459

Research Article

Jacobi Solver: A Fast FPGA-based Engine System for Jacobi Method

1
Huabin Ruan,

2
Xiaomeng Huang,

3
Haohuan Fu and

4
Guangwen Yang

1, 4
Department of Computer Science and Technology,

2, 3
Center for Earth Science System, Tsinghua University, Beijing, 100084, China

Abstract: The classical Jacobi method is widely used for solving linear systems. This method is considerably time-
consuming to compute millions upon millions of linear equations. In this study, we design a novel FPGA-based
Jacobi Solver. The kernel of the Jacobi Solver is a pipeline-friendly iteration algorithm which can eliminate the data
dependence between iteration steps. This algorithm is suitable for pipeline-friendly hardware architecture. The
experimental results show that the Jacobi Solver can solve more than 6.5 million of linear equations in one second
and achieves up to 341x speedup compared to a single-thread CPU version.

Keywords: Dependency, hardware, Jacobi method, speedup

INTRODUCTION

With abundant computational resource being

available, scientific computing are growing in size and
complexity. Many scientific computing problems lead
to the demand of solving large dimension linear

systems, e.g., >10
7

(Young, 2003).
Numerous methods have been proposed to solve

linear systems, such as Direct Solution method, Jacobi
method, Gauss-Seidel method, Conjugate Gradient
method, Multigrid method and Saad and Van Der Vorst
(2000). Among all these methods, Jacobi Method is
relatively simple and independent of the numbering of
the unknowns (Cavallaro and Luk, 1988). The obvious
advantage seen was that rounding errors would not be
accumulated, they are restricted to the last operation.
However, Jacobi method is very time-consuming to
compute millions upon millions of linear equations.

Fortunately, Jacobi method has much more
potential for parallelization. For example, O’Leary and
White (1985) introduce a parallel scheme based on
multi-splittings of the coefficient matrix and they prove
the convergence of this method with some sufficient
conditions on the coefficient matrix and on its splittings
(Bru and Fuster, 1990). Morris and Prasanna (2005)
implemented a FPGA-based single iteration of Jacobi
method without considering convergence and achieved
1.7x faster than CPU implementation in one iteration.
Wang et al. (2009) present a GPU-based
implementation of Jacobi method. Their experimental
results show that the performance of GPU-based Jacobi
method algorithm increases linearly along with the
scale of matrix increasing and finally achieved 3x faster
than Barrachina et al. (2008) GPU-based dense linear

system.
Our study also focuses on modifying Jacobi

method to make it suitable for FPGA architecture. We
design a FPGA-based Jacobi Solver which mainly
includes a new pipeline-friendly iteration algorithm.
The main idea of the pipeline-friendly iteration
algorithm is eliminating the data dependence between
iteration steps. To achieve this goal, we have to
reconstruct the work flow of the classical Jacobi
method with algorithmic transformations. After
enabling pipeline of different computation stages, we
finally implement the Jacobi Solver in hardware logic
and successfully make it run on Vitex-6 SX475T
FPGA. In order to evaluate the performance of our
FPGA-based Jacobi Solver, we implement the other
three different CPU-based Jacobi method solutions.
These CPU-based solutions are all fully optimized. The
Experimental results show that our FPGA-based Jacobi
Solver is significantly faster than all CPU-based
solutions. Our Jacobi Solver achieves a maximum of
341x speedup over a single-thread CPU-based solution,
115x speedup over a multi-thread CPU-based solution
and 35x speedup over a MPI-based solution.

MATERIALS AND METHODS

Fundamental of Jacobi method: The Jacobi method is
used to solve linear systems with matrix that without
zeros along its main diagonal. Each diagonal element is
solved for and an approximate value is plugged in.
Referring to the expressions in Bronshtein et al. (1985),
we given a system of n linear equations:

bAx = (1)

Res. J. Appl. Sci. Eng. Technol., 6(23): 4459-4463, 2013

4460

where,

=

nnnn

n

n

aaa

aaa

aaa

A

,...,,

.

.

.

,...,,

,...,,

21

22221

11211

,

=

nx

x

x

x

.

.

.

2

1

,

=

nb

b

b

b

.

.

.

2

1

 (2)

Then A can be decomposed into a diagonal

component D and the remainder R:

RDA += (3)

where,

=

nna

a

a

D

,...,0,0

.

.

.

0,...,,0

0,...,0,

22

11

,

=

0,...,,

.

.

.

,...,0,

,...,,0

21

221

112

nn

n

n

aa

aa

aa

R

 (4)

The solution is then iteratively solved by:

)()(1)1(kk RxbDx −= −+

 (5)

The Eq. (5) can be converted into an element-based

formula:

nixab
a

x
ij

k

jiji

ii

k

i ,...,2,1,
1)()1(=

−= ∑

≠

+ (6)

where, k is the iteration count. The �� will be computed

iteratively until the solution x = (��, ��, … , ��)

reaches convergence. The condition for the

convergence is that for a given precision ε, for example,

ε = 10
-9

, it satisfies following condition:

ε<
−

b

Axb k

 (7)

Based on Eq. (6), we write the pseudo-code of

Jacobi method in Algorithm 1. Line 7 to Line 12 in

Algorithm 1 continuously update component xi in

current (k+1)
th

 iteration and δ in Line 9 is the

accumulating result of ∑ ���

(�)
�� . When all

components (��, ��, … , ��)
 for solution x are updated,

the algorithm starts to check whether the result is

convergence or not. If solution x = (��, ��, … , ��)

reaches convergence at the ��� iteration, then the

iteration process will finish. Otherwise the algorithm

starts next iteration step.

It is obvious that there is data dependency between
δ and � when new iteration starts. This kind of data

dependency makes the classical Jacobi method
impossible to be implemented in hardware logic
(Weaver et al., 2003). We need to design a pipeline-
friendly algorithm for FPGA architecture.

Algorithm 1: The Classical Jacobi Method:

Choose an initial guess value x0;
k = 0;
Check if convergence is reached;
While convergence not reached do

for i: = 1 step until n do
δ = 0;
for j: = 1 step until n do

if j ≠ i then

δ = δ + �� �

(�)
;

end if
end for

��

(���)
 = (�� - δ)/ ��� ;

end for
Check whether convergence is reached;
k = k + 1;

end while

The target hardware: We use Maxeler’s MAX3
Acceleration card to implement our engine system of
Jacobi method. MAX3 acceleration card consists of one
Vitex-6 SX475T FPGA and 24 GB DDR3 onboard
memory. Figure 1 illustrates the architecture of our
used Maxeler acceleration system. The host application
runs on the conventional CPU and manages the
interaction between the host and the FPGA accelerators.
On the FPGA, kernels are the hardware designs
implementing the arithmetic and logical computations
needed within an algorithm. The manager is the
collective term for the FPGA logic that orchestrates
data flow between kernel and off-chip I/O.

Dividing an application into kernels and a manager
lets us separate computation from communication. This
is beneficial because it enables deeply pipelined kernels
without control flow constraints, which is key to
achieving high performance. Managers use a streaming
model for off-chip I/O to PCI Express and DDR3 RAM
memory and are optimized to achieve high use of
available bandwidth in off-chip communication
channels, allowing kernels to run at peak performance
(Lindtjorn et al., 2011).

Additionally, the MAX3 acceleration card is also
attached with a compiling platform named
MaxCompiler provided by Maxeler Technologies.
Using MaxCompiler, we only need to program the
algorithm of Jacobi method in Java and the MaxCom-
piler will compile and build the Java code into a
configurable bitstream file through the Vendor’s CAD
software that are integrated in MaxCompiler. The
generated bitstream file can be loaded into Maxeler
acceleration card at runtime.

Res. J. Appl. Sci. Eng. Technol., 6(23): 4459-4463, 2013

4461

Fig. 1: Architecture of maxeler acceleration card

Design of FPGA-based Jacobi solver: In this section,
we design a pipeline-friendly algorithm to eliminate the
data dependence between iteration steps. We divide the
complete large scale linear systems into blocks, in
which one block consists of a small number of linear
equations. All equations in one block will be
simultaneously solved when the pipeline-friendly
algorithm finishes iterations.

We can see from Line 9 in Algorithm 1 that

updating the δ value is one important step of Jacobi

method. This step needs all components � (j = 1, 2, ···,

n) that have been calculated in previous iteration. If we

just simply migrate the step of updating δ to FPGA

hardware logic, the computing process will fail because

the calculation for �� needs to pass through a long

pipeline stages in FPGA. When a new iteration step

starts, a number of � (j = k, k + 1, k + 2, ···, n) are still

non-value. It will lead to an invalid updating for �.
In order to solve the above problem, we reconstruct

the classical Jacobi method to a pipeline-friendly Jacobi
method which is shown in Algorithm 2. The main im-
provement of using block is solving a number of
equations simultaneously during one iteration step,
while the original method is only solving a single
equation during one iteration step.

We assume T FPGA clock cycles are needed

before all components (��, ��, … , ��)
 are figured out
for all the linear equations in a block. Before updating
the δ value, we calculate every xi in parallel as
following steps:

• Step 1: In t1 cycle, the algorithm starts to calculate

xi for the 1
st
 equation in block.

• Step 2: In t2 cycle, the algorithm starts to calculate

xi for the 2
nd

 equation in block. Meanwhile, it still

process rest calculation on xi for the 1
st
 equation in

block.

• Step i: In ti cycle, the algorithm starts to calculate

xi for the i
th

 equation in block. Meanwhile, it still

process rest calculation on xi for previous i

equations.

Algorithm 2: The Pipeline-Friendly Jacobi Method:

Choose an initial guess solutions ��
�, ��

�,…, ��

 to all

equations in block;
k = 0;
check if all equations in block have reached
convergence:
while all equations in block have reached convergence
do

for t : = 1 step until T do
�� = 0;

end for
for i : = 1 step until n do

for t : = 1 step until T do
for j : = 1 step until n do

if j ≠ i then

�� = �� + �� ��

(�)
;

end if
end for

���

(���)
 = (��� − ��)/ ���;

end for
end for

check whether T equations in current block have
reached convergence;
k = k + 1;

end while

After T FPGA clock cycles elapse, all components

(��, ��, … , ��)
 for the 1
st
 equation are figured out.

Therefore the updating for the first equation’s δ can be
correctly performed in new iteration. When the second
cycle starts in new iteration, all components

(��, ��, … , ��)
 for the 2
nd

 equation are also figured out
since it also has elapsed T FPGA clock cycles when
calculation on xi for the 2

nd
 equation starts, so updating

δ for the 2
nd

equation can also be correctly performed.
The process is the same for updating δ for other
equations in block when following cycles start in new
iteration.

Using this pipeline-friendly Jacobi method, we can
overlap multiple computing stages for updating δ and
results in eliminating the data dependency between
consequent iteration steps. This method is easy to be
implemented by FPGA hardware logic.

Since Algorithm 2 needs to solve T equations
simultaneously during the iterations, we change the

terms δ, ��, �, �� in Algorithm 1 to ��, ���, �� and ���

in Algorithm 2 respectively, where:

• �� is the corresponding δ for tth equation in block.

• ��� and �� are the corresponding component �� and

� respectively for tth equation in block.

• ��� is the corresponding �� for tth equation in block.

RESULTS AND DISSCUSSION

We implement the pipeline-friendly Jacobi method

on Maxeler MAX3 acceleration card with one Vitex-6

Res. J. Appl. Sci. Eng. Technol., 6(23): 4459-4463, 2013

4462

Table 1: Performance comparison (solved equations per second)

Data set ID Equation dimension Single-thread CPU version Multi-thread CPU version MPI version FPGA version

1 2 2,031,034 3,100,000 271,428 6,544,444

2 4 589,000 1,840,625 205,944 3,926,666
3 8 313,297 879,104 146,517 2,945,000

4 16 85,985 252,789 65,299 1,840,625

5 32 29,129 81,578 47,576 1,682,385
6 64 7,968 22,750 36,335 950,000

7 128 1,786 4,869 28,816 463,779

8 200 871 2,574 23,179 297,474

Table 2: Speedup result (FPGA-based solution V.S. CPU-based solutions)

Data set ID Equation dimension FPGA v.s. single-thread CPU version FPGA v.s. multi-thread CPU version FPGA v.s. MPI version

1 2 3x 2x 24x
2 4 6x 2x 19x

3 8 9x 3x 20x

4 16 21x 7x 28x
5 32 57x 20x 35x

6 64 119x 41x 26x

7 128 259x 95x 16x
8 200 341x 115x 12x

Fig. 2: Speedup of FPGA v.s. other CPU versions

SX475T FPGA. Using MaxCompiler software tool

suites provided by Maxeler Technologies, we only need

to program the pipeline-friendly Jacobi method in Java

and the MaxCompiler will compile and build the Java

code into a configurable bitstream file through the CAD

software integrated in MaxCompiler. The generated

bitstream file can be loaded into Maxeler acceleration

card at runtime.

For the purpose of comparison, three different CPU

versions of Jacobi method including a single-thread

CPU version, a multi-thread CPU version and a MPI

CPU version are also developed and tested. All these

versions are fully optimized in the C program language

and compiled with the Intel Compiler configured at the

O3 optimization level.

The single-thread CPU version and multi-thread

CPU version are deployed in a PC workstation with one

2.93 GHz quad-core Intel i7 CPU and a 4GB DDR3

memory. The MPI version is deployed over a 16-nodes

cluster with Intel MPI Library configured at highest

optimization level and each node powered by a 2.93

GHz quad-core Intel i7 CPU and a 4 GB DDR3

memory. Moreover, the MPI version is performed with

64 processes. Here we run the MPI-based

implementation in a limited number of processes only

for simple reference purpose, rather than discussing the

scalability of Jacobi method. The FPGA-based

implementation is deployed over a Maxeler MAX3

acceleration card with a Vitex-6 SX475T FPGA

running at 175 MHz and 24 GB DDR3 onboard

memory.

All above four implementations of Jacobi method

are tested according to eight datasets, which are

generated randomly with different linear dimension

from small to large. The linear dimension of eight

datasets is 2, 4, 8, 16, 32, 64, 128 and 200, respectively.

Limited by the quantity of hardware resources provided

by Vitex-6 SX475T FPGA on one Maxeler MAX3

acceleration card, the maximum linear dimension that

Jacobi Sovler can solve is 200. If more hardware

resources are available, the maximum linear dimension

can be extended.

Note that the amount of computation to be

performed within Jacobi method is proportional to

linear dimension. Therefore we keep the amount of

linear equations at 1 million in every dataset for

performance comparison.

We present the number of processed equations per

second for different versions in Table 1 and the speedup

of FPGA version over other versions in Table 2. For

simplification, we plot the Fig. 2 to compare the

speedup in detail.
As shown in Table 1, the average throughput of

FPGA-based implementation is high. For two
dimensions scenario, it can solve 6,544,444 equations
in one second. For two hundred dimensions scenario, it
still can solve about 297,474 equations in one second.
These peak performance results are much higher than
the other three CPU versions.

As shown in Table 2, with the increasing of

dimension in each dataset, the speedup is obviously

keeping rising except MPI version. In our test cases,

most of the best speedups are achieved on the largest

dataset (i.e., two hundred dimensions scenario) with

0

50

100

150

200

250

300

350

2 4 8 16 32 64 128 200

FPGA v.s single-thread CPU version
FPGA v.s multi-thread CPU version

FPGA v.s MPI CPU version

Res. J. Appl. Sci. Eng. Technol., 6(23): 4459-4463, 2013

4463

341x speedup over the single-thread CPU version, 115x

speedup over the M-CPU version. Comparing with the

MPI-based solution, FPGA solution achieves maximum

35x speedup when dimension is 32. When dimension

increases to 200, the FPGA solution only achieves 12x

faster than MPI-based solution. The main reason for

this result is the time saved in computation process is

greater than time consumed in the overhead of forking

64 MPI processes. Our studies in this case are still

limited to the number of MAX3 card. If more MAX3

cards are available, we can compare multi-FPGA

version with MPI version further.

The pipeline-friendly Jacobi method enables us to
deploy sufficient FPGA functional units and is easy to
be implemented in deep pipeline FPGA hardware logic.
Furthermore, if more hardware resources on FPGA
platform being available, we can deploy more than one
pipeline for this pipeline-friendly Jacobi method in
FPGA which will result in further acceleration.

CONCLUSION

This study presents Jacobi Solver, a fast FPGA-
based design of Jacobi Method. It is useful to solve
large-scale linear systems. We design a pipeline-
friendly Jacobi method, which eliminates the data
dependency between iterations and make Jacobi method
not only successfully be implemented with FPGA
hardware logic, but also achieve significant
acceleration. Our experimental results show that Jacobi
Solver is more efficient than other CPU versions
significantly.

REFERENCES

Barrachina, S., M. Castillo, F. Igual, R. Mayo and

E. Quintana-Orti, 2008. Solving dense linear
systems on graphics processors. Proceedings of the
14th International Euro-Par Conference on Parallel
Processing. Springer-Verlag Berlin, Heidelberg,
pp: 739-748.

Bronshtein, I., K. Semendiaev and K. Hirsch, 1985.

Handbook of Mathematics. Van Nostrand

Reinhold, New York.

Bru, R. and R. Fuster, 1990. Parallel chaotic

extrapolated jacobi method. Appl. Math. Lett.,

3(4): 65-69.

Cavallaro, J. and F. Luk, 1988. Cordic arithmetic for an

svd processor. J. Parallel. Distr. Com., 5(3):

271-290.

Lindtjorn, O., R. Clapp, O. Pell, H. Fu, M. Flynn and

H. Fu, 2011. Beyond traditional microprocessors

for geoscience high-performance computing

applications. IEEE Micro, 31(2): 41-49.

Morris, G. and V. Prasanna, 2005. An fpga-based

floating-point jacobi iterative solver. Proceeding of

the 8th IEEE International Symposium on Parallel

Architectures, Algorithms and Networks, pp: 8-17.

O’Leary, D.P. and R.E. White, 1985. Multi-splittings of

matricesand parallel solution of linear systems.

SIAM J. Algebr. Discrete Methods, 6(4): 630-640.

Saad, Y. and H.A. Van Der Vorst, 2000. Iterative

solution of linear systems in the 20th century.

J. Comput. Appl. Math., 123(1-2): 1-33.

Wang, T., Y. Yao, L. Han, D. Zhang, and Y. Zhang,

2009. Implementation of jacobi iterative method on

graphics processorunit. Proceeding of IEEE

International Conference on Intelligent Computing

and Intelligent Systems, 3: 324-327.
Weaver, N., Y. Markovskiy, Y. Patel and

J. Wawrzynek, 2003. Post-placement c-slow

retiming for the xilinx virtex fpga. Proceeding of

the 11th International Symposium on Field

Programmable Gate Arrays. ACM, Monterey CA,

Feb. 23-25, pp: 185-194.

Young, D., 2003. Iterative Solution of Large Linear

Systems. Courier Dover Publications, Mineola,

N.Y., pp: 570.

