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Abstract: Hybrid monohull is a kind of special monohull with a built-up appendage on the bottom of the bow. The 
appendage can produce a large damping force (moment) which conclude obviously viscous damping to greatly 
upgrade the ship's longitudinal motion performance. In this study, the RANS method is used on calculating the 
hydrodynamic coefficients of different ships with and without the built-up appendage. By comparing with the 
calculating results using potential theory the viscous effect of the appendage is obvious. The longitudinal motion and 
wave loads of the two ships are predicted. The calculating results of the two ships are compared with each other to 
analyze the importance of viscous effect for the hybrid monohull. The calculating results are also compared with the 
model test results to validate the precision of the predicting method. 
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INTRODUCTION 

 

Hybrid monohull is a kind of high performance 

ship with good sea keeping performance and its 

resistance performance in calm water is almost the 

same as round bilge ship. The feature of hybrid 

monohull lies on the longitudinal stability built-up 

appendage which is fixed on the bottom of the bow. 

The appendage is built up with a semi-submerged bow 

and two fins and the sketch of the built-up appendage is 

shown in Fig. 1. The longitudinal motion will be 

stabilized by the viscous and lifting damping force 

(moment) producing by the appendage. It has been 

indicated by theory and experiment researches that 

hybrid monohull has very good sea keeping 

performance (Cai et al., 2003; Liu et al., 2002). The 

research results indicate that methods based on 

potential theory can not reflect the reducing effect of 

the appendage (Zhang and Li, 2007; Li and Zhang, 

2008). The reason lies on the ignoring of viscous effect 

of potential theory, however, the viscous damping play 

a very important part in the reducing impact of the 

built-up appendage (Sun et al., 2009; Gao and 

Shuzheng, 2011). So we have to modify the viscous 

terms during the motion and wave loads prediction. 
In this study, RANS method is used for calculating 

the hydrodynamics of the bow with built-up appendage. 
The hydrodynamics will be put into the motion 
equations for solving. The results indicate that the 
motion and wave loads are both different from the 
normal ship and the method used in this study can 
reflect the viscous effect and improve the prediction 
precision. 

 
 

Fig. 1: Form of the hybrid monohull 

 
Table 1: Principal dimensions of the ship 

Ships Lwl (m) B (m) T (m) ▽ (t) 

R0 125 15.2 4.5 3450 
V0 125 13.8 4.2 3350 

 
Table 2: Principal dimensions of semi-submerged bow 

Lmax/m Bmax/m Hmax/m ▽ (t) 

25 4 1.5 61 

 
The ships calculated in this study is a round bilge ship 
(R0) and a deep-V hybrid monohull (V0) which has a 
longitudinal stability built-up appendage fixing on the 
bottom of the bow. The parameters of the ships  and the 
built-up appendage are shown in Table 1 and 2. The 
hydrodynamics calculation will be introduced as 
follows. 

 

MODELING AND OPTIMIZATION 

 

Model introduction: In this study the hydrodynamics 

of the sections with built-up appendage are calculated 

using potential method and RANS method. It is to say 

that the bow is divided to 10 sections and the space is 

0.5   or   0.25   stations  according to the necessary. The  
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Fig. 2: Sections of ships 

 

 
Fig. 3: Sketch of coordinate for 2D section’s surge

 

 
Fig. 4: The sketch of calculation field and grids

 

sections with the built-up longitudinal

appendages are shown in Fig. 2. 

The potential method used in this 

source/dipole mixed-distribution approach. Figure 3 

shows the coordinate for the 2D section’s surge.

The 2D frequency domain Green function is 

introduced to solve the problem of 2D section surging:
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The 2-D frequency domain Green function could 

be written as: 
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Fig. 3: Sketch of coordinate for 2D section’s surge 

 

Fig. 4: The sketch of calculation field and grids  

up longitudinal-stabilizing 

The potential method used in this study is 

distribution approach. Figure 3 

shows the coordinate for the 2D section’s surge. 

The 2D frequency domain Green function is 

introduced to solve the problem of 2D section surging: 

                       (1) 

D frequency domain Green function could 

 
Fig. 5: The unsteady surging force of a section
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Fig. 6: λ33 of section with SSB 
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Fig. 7: µ33 of section with SSB 
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Fig. 5: The unsteady surging force of a section 
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Fig. 8: λ33
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Fig. 9: µ33

 
of deep-V section 
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Fig. 10: Amplitude of heave response (V0) 
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Fig. 11: Amplitude of pitch response (V0) 

 

The velocity potential of any point p in the flow 

field could be expressed as below: 
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Fig. 12: Amplitude of heave response (R0)          

where,  
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The line c presents the boundary of flow field with 

the normal direction pointing outside the flow field and 
the direction is shown as Fig. 1. 

The additional mass of section mkj and damping 
coefficient µkj can be got from the equation below: 
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Establishing and optimizing model: The RANS 

method is used for calculating the unsteady surging 

force of the sections and the amplitude of surging is 

0.02 m. The calculating field and the grids are shown in 

Fig. 4. The LVM method is used for the segregation, 

the field is 10B×10T and the smallest grids lie on the 

ship body is 0.1 m. The triangle unstructural grids are 

carried and the field is divided into two parts which are 

air and water, so the VOF method is used for dealing 

with the free surface. The PISO equation, RNG-� − � 

model and dynamic mesh are also used. Like Fig. 5 

shows the calculation results of the unsteady surging 

force of  section 3 at 2 rad/s. 

Where B is the breadth of water line, A is the 

surging amplitude, Fa is the surging force amplitude and 

θ0 is the original phase. ρ, g, B, A and ω are all 

knowable, so the add mass λ33 and the damping 

coefficient µ33 can be get by separating Fa and θ0 from 

the unsteady surging force F. Figure 6 to 9 show the 

results of λ33 and µ33 of sections 1 and 2.  

The calculation results show that, for section 1 (no 

fin) the add mass calculated by potential theory is not 

very different from viscous method, but the damping 

coefficients are as more different as the increasing of 

surging frequency. So the viscous effect of SSB is 

reflected. However, for section 2 the add mass and 

damping coefficients calculated by potential theory are 

both very different from the results of viscous method, 

so the viscous effect of SSB and fins are reflected. The 

reason  lies  on  the  viscous damping  is proportional to  
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Fig. 13: Amplitude of pitch response (R0) 
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Fig. 14: Vertical shearing force of section 10         
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Fig. 15: Vertical moment of section 10 
 

the square even more powers, so the viscous effect 
have to be considered in motion prediction of hybrid 
monohull. 

 
APPLICATION EXAMPLE 

 
Put the viscous and lifting modification coefficients 
into the motion equations we can get: 
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where, 

*  = Viscous modification terms  
f   = Lifting modification terms 

 
 According to the d’Alembert principal the loads 
equations can be deduced. Using the above method the 
head sea longitudinal motions and wave loads of a 
deep-V monohull and a hybrid monohull as Fr = 0.43 
are predicted and the prediction model is STF method.  

The motion prediction results of the hybrid 
monohull when Fr = 0.37 are shown in Fig. 10 to 11 
which show the comparison of potential theory method, 
viscous modification method and model test in tank. 
The motion prediction results of the original ship and 
the hybrid monohull are shown in Fig. 12 to 13. The 
wave loads prediction results are shown in Fig. 14 to 15 
which show the comparison of potential theory method 
and viscous modification method. 
 

CONCLUSION 
 

From the research of the above we can get some 
conclusions:  

 

• Viscous effect is important for the motion and 
wave loads prediction of hybrid monohull.  

• The built-up appendage can reduce the longitudinal 
motion effectively. 
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