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Abstract: In this study, Reconstruction of Variational Iteration Method (RVIM) is used for computing the 
Generalized Hirota-Satsuma coupled KdV equation, Kawahara equation and FKdV equations. This new applied 
algorithm is a powerful and efficient technique in finding the approximate solutions for the linear and nonlinear 
equations. RVIM as a method that based on Laplace transform has high rapid convergence and reduces the size of 
calculations using only few terms, so many linear and nonlinear equations can be solved by this method. Results are 
compared with those of Adomian’s Decomposition Method (ADM). The results of Reconstruction of Variational 
Iteration Method (RVIM) are of high concentration and the method is very effective and succinct. 
 
Keywords: Generalized hirota-satsuma coupled KdV equation, kawahara equation, Reconstruction of Variational 

Iteration Method (RVIM), some FKdV equations 

 
INTRODUCTION 

 
Nonlinear phenomena play a crucial role in applied 

mathematics and physics. The results of solving 
nonlinear equations can guide authors to know the 
described process deeply. But it is difficult for us to 
obtain the exact solution for these problems. In recent 
decades, there has been great development in the 
numerical analysis (Burden and Faires, 1993) and exact 
solution for nonlinear partial Equations. Reaching to a 
high accurate approximation for linear and nonlinear 
equations has always been important while it challenges 
tasks in science and engineering. Therefore, several 
numbers of approximate methods have been established 
like Homotopy Perturbation Method (HPM) (Yildirim 
and Ersen, 2010; Moallemi et al., 2012) Variational 
Iteration Method  (VIM)  (Nikkar and Mighani, 2012; 
Saadati et al., 2009; He, 1999, 2000), Energy Balance 
Method (Nikkar et al., 2011) Homotopy Analysis 
Method (Khan et al., 2012) and so on each of which has 
advantages and disadvantages. We introduce a new 
analytical method of nonlinear problems called the 
reconstruction of variational iteration method, which in 
the case of comparing with VIM (Nikkar and Mighani, 
2012; Saadati et al., 2009; He, 1999, 2000), HPM 
(Yildirim and Ersen, 2010; Moallemi et al., 2012) not 
uses Lagrange multiplier as variational methods do and 
not requires small parameter in equations as the 
perturbation techniques. RVIM has been shown to solve 
a large class of nonlinear problems with approximations 
converging to solutions rapidly, effectively, easily and  

accurately. The method used gives rapidly convergent 
successive approximations. As stated before, we aim to 
achieve analytic solutions to problems. We also aim to 
approve that the reconstruction of variational iteration 
method is powerful, efficient and promising in handling 
scientific and engineering problems. Besides the aim of 
this letter is to show that RVIM is strongly and simply 
capable of solving a large class of linear or nonlinear 
differential equations without the tangible restriction of 
sensitivity to the degree of the nonlinear term and also 
is very user friend because it reduces the size of 
calculations by not requiring calculating Lagrange 
multiplier. The most sensible advantages of RVIM are 
using Laplace Transform and choosing initial 
conditions simply and easily in solving linear and 
nonlinear equations. Effectiveness and convenience of 
this method is revealed in comparisons with the exact 
solution. The results illustrate that the RVIM can 
faithfully capture the posteriori distribution in a 
computationally efficient way. In this study we consider 
RVIM to find the solution of the Generalized Hirota-
Satsuma coupled KdV equation, Kawahara equation 
(Polat et al., 2006; Kaya and Al-Khaled, 2007) and 
FKdV equations. 

 

DESCRIPTION OF THE METHOD 

 

In the following section, an alternative method for 

finding the optimal value of the Lagrange multiplier by 

the use of the Laplace transform (Hesameddini and 
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Latifizadeh, 2009; Nikkar et al., 2012), will be 

investigated a large of problems in science and 

engineering involve the solution of partial differential 

equations. Suppose x, t are 2 independent variables; 

consider t as the principal variable and x as the 

secondary variable. If u (x, t) is a function of 2 variables 

x and t, when the Laplace transform is applied with t  as 

a variable, definition of Laplace transform is: 

                   

  ��u(x, t); s� = 
 e���∞� u(x, t)dt                (1) 

  

We have some preliminary notations as:  

                                          � ����� ; s� = 
 e���∞� ���� dt = sU(x, s) − u(x, 0)    (2)

  � ������� ; s� = s�U(x, s) − su(x, 0) − u�(x, 0)        (3) 

  

where,    

                                                                 U(x, s) = ��u(x, t); s�                                         (4)

   

We often come across functions which are not the 

transform of some known function, but then, they can 

possibly be as a product of 2 functions, each of which is 

the transform of a known function. Thus we may be 

able to write the given function as U (x, s),V (x, s) 

where U(s) and V(s) are known to the transform of the 

functions u( x, t), v(x, t), respectively. The convolution 

of u (x, t) and v (x, t) is written u (x, t)*(x, t). It is 

defined as the integral of the product of the 2 functions 

after one is reversed and shifted.                                     

 

Convolution Theorem: If U (x, s), V (x, s) are the 

Laplace transform of u (x, t), v( x, t), when the Laplace 

transform is applied to t as a variable, respectively; then 

U (x, t) V (x, t) is the Laplace Transform of
 �(�,  −!�ℰ#�,ℰ$ℰ:      

                                                            ��%�U(x, s). V(x, s)� = 
 u(x, t − ℰ)v(x, ℰ)dℰ��    (5) 

  

To facilitate our discussion of Reconstruction of 

Variational Iteration Method, introducing the new 

linear or nonlinear function ℎ(�( , �)) = *( , �) −+(�( , �)) and considering the new equation, rewrite ℎ(�( , �)) = *( , �) − +(�( , �))  as: 

                                                  

  L(u(t, x)) = h(t, x, u))                (6) 

 

Now, for implementation the correctional function 

of VIM based on new idea of Laplace transform, 

applying Laplace Transform to both sides of the above 

equation so that we introduce artificial initial conditions 

to zero for main problem, then left hand side of 

equation after transformation is featured as: 

    ��L.u(x, t)/� = U(x, s)P(s)                               (7)

  

where, P(s) is polynomial with the degree of the highest 

order derivative of the selected linear operator:      

                                                            ��L.u(x, t)/� = U(x, s)P(s) = ��h.(x, t, u)/�      (8)  

 

Then:     
 

  U(x, s) = ��1.(2,�,�)/�3(�)                                (9) 

 

Suppose that 4(5) = %6(7)   and ��ℎ.(�,  , �)/� =:(�, 5). Therefore, using the convolution theorem we 

have: 

 U(x, s) = D(s). H(x, s) = �=>d(t) ∗ h(x, t, u)@A    (10) 

 

Taking the inverse Laplace transform on both side 

of equation: 

  

  u(x, t) = 
 d(t − ℰ)h(x, ℰ, u)dℰ��                     (11)

  

Thus the following reconstructed method of 

variational iteration formula can be obtained:   
 uBC%(x, t) = u�(x, t) + 
 d(t − ℰ)h(x, ℰ, uB)dℰ��  (12) 

 

And  ��(�,  )  is initial solution with or without 

unknown parameters. In absence of unknown 

parameters,  ��(�,  ) should satisfy initial/ boundary 

conditions.  

 

APPLICATION OF RVIM 

 

In this section, we will apply the RVIM to solve 

Generalized Hirota-Satsuma coupled KdV equation, 

Kawahara equation and FKdV equations. 

 

Generalized hirota-satsuma coupled KdV equation 

system:  We consider a generalized Hirota-Satsuma 

coupled KdV equation system as Kaya (2004): 
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Sucted to the initial conditions: 
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At first rewrite Eq. (13) based on selective linear 

operator as: 
                               

� .�(�)/ = u� = (
xxxxx uwuuu )(33

2

1
+−

EFFFFFGFFFFFHI(J,!,K)
)      

                               

� .#(�)/ = #� = (
xxxx uvv 3+−

EFFFGFFFHI(J,!,K) )                       (15) 

 

� .L(�)/ = w� = (
xxxx uww 3+−EFFGFFHI(J,!,K) ) 

  
Now Laplace transform is implemented with 

respect to independent variable x on both sides of Eq. 
(15) and by using the new artificial initial condition 
(which all of them are zero) we have:  

 

  N 5 ∪ (�,  ) = � .ℎ(�,  , �)/5 ∪ (�,  ) = � .ℎ(�,  , #)/  5 ∪ (�,  ) = � .ℎ(�,  , L)/ P                           (16) 

 

QRS
RT ∪ (�,  ) =  � .I(J,!,K)/7∪ (�,  ) =  � .I(J,!,U)/7∪ (�,  ) =  � .I(J,!,V)/7   

P                                      (17)  

                 
And whereas Laplace inverse transform of 1/s is as 

follows:  
 ��%W1 sY Z =1                                                       (18)  

 
Therefore by using the Laplace inverse transform 

and convolution theorem it is concluded that: 
 (�,  ) =  [ ℎ(�, \, �)!

� $\ 

 #(�,  ) =  
 ℎ(�, \, #)!� $\                                  (19) 

 

L(�,  ) =  [ ℎ(�, \, L)!
� $\ 

 
Hence, we arrive the following iterative formula 

for the approximate solution of subject to the initial 
condition (14). So, in exchange with applying recursive 
algorithm, following relations are achieved: 
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Now we start with an arbitrary initial 

approximation ��(�,  ) = ]J , that satisfies the initial 
condition and by using the RVIM iteration formula 
(20), we have the following successive approximation: 
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(21)           

 

⋮ 
whereas, the RVIM method admits the use of: 
 � = _`ab→∞

�b 

 # = _`ab→∞
#b 

 L = _`ab→∞
Lb 

 
Now we study the diagrams obtained by RVIM and 

ADM (Kaya, 2004) (Fig. 1-4). 
 
Kawahara equation: We consider Kawahara equation 
as Kaya (2003): 
 

0=−+− xxxxxxxxxt uuuuu
                               

(22) 
 
 

With the following initial conditions: 
 

)
132

(sec
169

105
)0,( 4 x

hxu =                                    
(23)  

 
At first rewrite eq. (22) based on selective linear 

operator as:   
 

 .�(�)/ = u� = ( xxxxxxxxx uuuu −+−
EFFFFFFGFFFFFFHI(J,!,K)

)         (24) 
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Fig. 1: The comparison of RVIM and ADM for the solution u (x, t) for 

Fig. 2: The comparison of RVIM and ADM for the solution v (x, t) for different values of t

 

Fig. 3: The comparison of RVIM and ADM for the solution w (x, t) for different values of t
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Fig. 1: The comparison of RVIM and ADM for the solution u (x, t) for different values of t  

 

Fig. 2: The comparison of RVIM and ADM for the solution v (x, t) for different values of t 

Fig. 3: The comparison of RVIM and ADM for the solution w (x, t) for different values of t 
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Fig. 4: The surfaces on both columns, respectively show the solutions, u (x, t), v (x, t), w(x, t), for RVIM on the right and ADM 

on the left 

 

Now Laplace transform is implemented with 

respect to independent variable x on both sides of Eq. 

(24) and by using the new artificial initial condition 

(which all of them are zero) we have: 

 5 ∪ (�,  ) = � .ℎ(�,  , �)/                                  (25) 

 

 ∪ (�,  ) =  � .I(J,!,K)/7                                           (26) 

   
And whereas Laplace inverse transform of 1/s is as 

follows:  

 

  ��%W1 sY Z =1                                                     (27)  

 

Therefore, by using the Laplace inverse transform 

and convolution theorem it is concluded that: 
 �(�,  ) =  
 ℎ(�, \, �)!� $\                                  (28) 

                 
Hence, we arrive the following iterative formula 

for the approximate solution of subject to the initial 
condition (23). So, in exchange with applying recursive 
algorithm, following relations are achieved: 

 

∫ −+−+=+

t

nnnnn duuuuuu
xxxxxxxxx

0

01 )( ε        (29) 

Now we start with an arbitrary initial 

approximation ��(�,  ) = ]J , that satisfies the initial 

condition and by using the RVIM iteration formula 

(29), we have the following successive approximation 

(Fig. 5, 6): 

 

∫ −+−+=
t

duuuuuu
xxxxxxxxx

0

000001 )( ε              (30)   

              
 ⋮ 

whereas, the RVIM method admits the use of: 

 � = _`ab→∞
�b 

 

Fifth order KdV equations:  We consider a fifth order 

KdV equation as Kaya (2003): 

 

0=+−+ xxxxxxxxxt uuuuuu
                           

(31)  

 

With the following initial conditions: 

 
xexu =)0,(
                                                        

(32)  

 

At first rewrite Eq. (31) based on selective linear 

operator as: 
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Fig. 5: The comparison of RVIM and ADM for the solution u (x, t) for different values of t 

 

 

Fig. 6: The surfaces on both columns, respectively show the solutions, u (x, t), for RVIM on the right and ADM on the left

 

      � .�(�)/ = u� = ( xxxx uuuu −
EFFFFFFGFI(J,!,K)

 

Now Laplace transform is implemented with 

respect to independent variable x on both sides of 

(33) and by using the new artificial initial condition 

(which all of them are zero) we have: 

  5 ∪ (�,  ) = � .ℎ(�,  , �)/                                  

 

  ∪ (�,  ) =  � .I(J,!,K)/7                                          

    

And whereas Laplace inverse transform of 

follows:  

 ��%W1 sY Z =1                                                       (36) 

 

Therefore, by using the Laplace inverse transform 

and convolution theorem it is concluded that:

 �(�,  ) =  
 ℎ(�, \, �)!� $\                                  
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Fig. 5: The comparison of RVIM and ADM for the solution u (x, t) for different values of t  

Fig. 6: The surfaces on both columns, respectively show the solutions, u (x, t), for RVIM on the right and ADM on the left

xxxxxu+
FFFFFFH)

)    (33) 

Now Laplace transform is implemented with 

respect to independent variable x on both sides of Eq. 

(33) and by using the new artificial initial condition 

                                  (34) 

                                         (35) 

And whereas Laplace inverse transform of 1/s is as 

1                                                       (36)  

Therefore, by using the Laplace inverse transform 

and convolution theorem it is concluded that: 

                                  (37)  

Hence, we arrive the following iterative formula 

for the approximate solution of subject to 

condition (32). So, in exchange with applying recursive 

algorithm, following relations are achieved:
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t
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Now we start with an arbitrary initial 

approximation ��(�,  ) = ]J , that satisfies the initial 

condition and by using the RVIM iteration formula 

(38), we have the following successive approximation:
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  ⋮ 
where,  as the RVIM method admits the use of

 � = _`ab→∞ �b  

 

 

Fig. 6: The surfaces on both columns, respectively show the solutions, u (x, t), for RVIM on the right and ADM on the left 

Hence, we arrive the following iterative formula 

for the approximate solution of subject to the initial 

. So, in exchange with applying recursive 

algorithm, following relations are achieved: 

n du
xxxxx

) ε           (38) 

Now we start with an arbitrary initial 

that satisfies the initial 

by using the RVIM iteration formula 

(38), we have the following successive approximation: 

+ du
xxxxx

0 ) ε         (39)  

the RVIM method admits the use of: 
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CONCLUSION 
 

In this study, an explicit analytical solution is 

obtained for Some Highly Nonlinear Equations by 

means of the Reconstruction of Variational Iteration 

Method (RVIM), which is a powerful mathematical tool 

in dealing with nonlinear equations. The results clearly 

indicate the reliability and accuracy of the proposed 

technique. The obtained solutions are compared with 

those of ADM. Simplicity and requiring less 

computation, rapid convergence and high accuracy are 

advantages of this technique 
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