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Abstract: In this study analytically systems of nonlinear ordinary differential equations such as modeling the 
pollution of a system of lakes are studied by a powerful analytical method that is called Reconstruction of 
Variational Iteration Method (RVIM). The RVIM technique provides us a simple way to ensure the convergence of 
solution series, so that we can always get accurate enough approximations. Also, it is independent of any small 
parameters at all. The method is capable of reducing the size of calculation and easily overcomes the difficulty of 
the perturbation technique or Adomian polynomials. The results are compared with the results obtained by 
MATLAB. Some plots are presented to show the reliability and simplicity of the methods. 
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INTRODUCTION 

 
The Great Lakes are very big and very beautiful, 

but most of all they are very fragile and delicate. 
We can prevent pollution in river water in many 

ways and some of them are as follows:  
 

• Not discharging untreated sewage and other 
industrial waste water into rivers 

• Not dumping solid wastes, garbage and medical 
wastes in river banks 

• Not using river banks as open toilets 

• Not disposing dead human bodies/animal carcasses 
in rivers 

• Not quarrying sand in river beds which is a key 
factor in river bank stability and erosion of banks 

• Not washing vehicles directly in the flowing river 
water and in many other ways according to the life 
style of local people 
 
Since the lakes are surrounded by land, once bad 

toxic substances go into the lake, they will stay there 
for a long time. This is why it is so important that we 
work together to make sure the lakes do not become 
polluted. 

Modelling the pollution of a system of lakes is 
examined at the study (Biazar et al., 2006). Figure 1 
shows the system of three lakes that are modeled in this 
study (Hoggard, 2008). Each lake is considered to be a 
large compartment and the interconnecting channel as 

pipes between the compartments. The direction of flow 
in the channels or pipes is indicated by the arrows in 
(Hoggard, 2008). A pollutant is introduced into the first 
lake where p (t) denotes the rate at which the pollutant 
enters the lake per unit time. The function p (t) may be 
constant or may vary with time. We are interested in 
knowing the levels of pollution in each lake at any time.  
The components of the basic three-component model 
are the amount of the pollutant in lake 1 at any time 

0≥t , the amount of the pollutant in lake 2 at any time 

0≥t ,and the amount of the pollutant in lake 3 at any 

time 0≥t , are denoted respectively by )(tx , )(ty  

and )(tz . These quantities satisfy: 
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with the initial conditions: 
 

321 )0()0(,)0( rzryrx ===                             (2) 

 

Throughout this study, we assume the following 

conditions: 
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Fig. 1: System of three lakes with interconnecting channels. A pollutant enters the first lake at the indicated source (Giordano and 

Weir, 1991) 
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In recent years, several such techniques have 

drawn special attention, such as the homogeneous 
balance method (Wang et al., 1996), Adomian's 
decomposition method ADM (Adomian, 1998), the 
Variational Iteration Method (Nikkar and Mighani, 
2012; Saadati et al., 2009; He, 1999, 2000a), Homotopy 
Perturbation Method (Yildirim et al., 2010; Taghipour 
2010) Energy Balance Method (Nikkar et al., 2011), as 
well as Homotopy Analysis Method (HAM). After that, 
many types of nonlinear problems were solved by the 
HAM by others (He, 2000b; Matinfar et al., 2012; Khan 
et al., 2012). One of the newest analytical methods to 
solve nonlinear equations is Reconstruction of 
Variational Iteration Method (RVIM) which is an 
accurate and a rapid convergence method in finding the 
approximate solution for nonlinear equations. By 
applying Laplace Transform, RVIM overcomes the 
difficulty of the perturbation techniques and other 
variational methods in case of using small parameters 
and Lagrange multipliers, respectively. Reducing the 
size of calculations and omitting the difficulty arising in 
calculation of nonlinear intricately terms are other 
advantages of this method. In this study RVIM has been 
applied to solve of modeling the pollution of a system 
of lakes (1). The numerical solutions are compared with 
the available exact and by MATLAB ode15s. 
 

BASIC IDEA OF RVIM 
 

To clarify the basic ideas of our proposed method 
in (Hesameddini and Latifizadeh, 2009; Nikkar et al., 

2012), we consider the following differential equation 
same as VIM based on Lagrange multiplier (Wazwaz, 
2007): 

 
Lu(x1,…,xk) + Nu(x1,…,xk) = f(x1,…,xk)              (3) 

  
By suppose that: 

∑ =
=

k

i ixik xuLxxLu
01 )(),,( L                             (4) 

 

where, � is a linear operator, � a nonlinear operator and 

����, ⋯ , �	
 an inhomogeneous term.  
we can rewrite Eq. (3) down a correction functional 

as follows: 
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therefore: 

 

)),,(),,,(()( 11 kkjxj xxuxxhxuL LL=                          (6) 

 

with artificial initial conditions being zero regarding the 

independent variable xj.  

By taking Laplace transform of both sides of the 

Eq. (6) in the usual way and using the artificial initial 

conditions, we obtain the result as follows: 
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where, P (s) is a polynomial with the degree of the 

highest derivative in Eq. (7), (the same as the highest 
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order of the linear operator ���
). The following 

relations are possible:  

 

H[h] =l                                                                            (8-a) 

 

P(s)

1
B(s) =                                                     (8-b) 

 

B(s))][b(x i =l                 (8-c) 

 

Which that in Eq. (8-a) the function: 

 

)),,,,,,(( 111 uxxsxxH kii +−L  

 

and 

 

 )),,,,,,(( 111 uxxxxxh kiii +−L
 

 

have been abbreviated as 
, ℎ, respectively. 

 Hence, rewrite the Eq. (7) as: 
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Now, by applying the inverse Laplace Transform on 

both sides of Eq. (9) and by using the (8-a) to (8-c), we 

have: 
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Now, we must impose the actual initial conditions 

to obtain the solution of the Eq. (3). Thus, we have the 

following iteration formulation: 
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where, u� is initial solution with or without unknown 

parameters. Assuming u� is the solution of Lu, with 

initial/boundary conditions of the main problem, In case 

of no unknown parameters, �� should satisfy 

initial/boundary conditions. When some unknown 

parameters are involved in ��, the unknown parameters 

can be identified by initial/boundary conditions after 

few iterations, this technology is very effective in 

dealing with boundary problems. It is worth mentioning 

that, in fact, the Lagrange multiplier in the He's 

variational iteration method is  λ �τ
 = b �x� − τ
 as 

shown in (Hesameddini and Latifizadeh, 2009). 

The initial values are usually used for selecting the 

zeroth approximation ��. With  �� determined, then 

several approximations ��  � > 0, follow immediately. 

Consequently, the exact solution may be obtained by 

using: 
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Applying RVIM to modelling the pollution of a 

system of lakes: We close our analysis by studying the 

Pollution of a System of Lakes:  
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with the initial conditions: 

 

321 )0()0(,)0( rzryrx ===                           (14) 

 

At first rewrite Eq. (13) based on selective linear 

operator as: 
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Now Laplace transform is implemented with 

respect to independent variable x on both sides of Eq. 

(15) and by using the new artificial initial condition 

(which all of them are zero) we have: 
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And whereas Laplace inverse transform of 1/s is as 

follows:  
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Therefore by using the Laplace inverse transform 

and convolution theorem it is concluded that: 
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Hence, we arrive the following iterative formula 

for the approximate solution of subject to the initial 

condition (14). So, in exchange with applying recursive 

algorithm, following relations are achieved: 
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We start with an initial approximation 

302010 )()(,)( rtxandrtyrtx ===  by the iteration 

formula (20), we can obtain the first few components as 

follows: 
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where, as the RVIM method admits the use of: 

 

nn

nn

nn

z(t)limz(t)

y(t)limy(t)

x(t)limx(t)

∞→

∞→

∞→

=

=

=

 
 

A five terms approximation to the solutions are 

considered: 
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This was done with the standard parameter values 

given above and initial values 0,0 21 == rr and 03 =r  

for the three-component model.  

A few approximations for )(tx , )(ty  and )(tz are 

calculated and presented below: 
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Figure 2 indicates that the differences among the 

ode15s with Reconstruction of Variational Iteration 

Method (RVIM) and the obtained results converge 

to the ode15s solution and the errors are reduced. 

Figure 3 indicates that the differences among the 

ode15s with Reconstruction of Variational Iteration 

Method (RVIM). Ode15s solution is obtained from the 

solution of RVIM is a good convergence and the error 

close to zero. 

Figure 4 indicates that the differences among the 

ode15s with Reconstruction of Variational Iteration 

Method (RVIM). The solution obtained from RVIM 

away from the solution is obtained ode15s. 

As the plots state the amount of the pollutant in 

Lake 1, Lake 2 and Lake 3 increase. 

 
 

Fig. 2: The comparison of the results of x(t) via the two methods for a system of lakes (1) 

 

 
 

Fig. 3: The comparison of the results of y(t) via the two methods for a system of lakes (1) 
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Fig. 4: The comparison of the results of z(t) via the two methods for a system of lakes (1) 

 

CONCLUSION 

 

In the present study we have applied the 

Reconstruction of Variational Iteration Method (RVIM) 

for finding the solutions of nonlinear ordinary 

differential equation systems such as non-linear 

oscillatory systems. Comparison of results in graphical 

schemes proved that RVIM can be used in applied 

mathematics as a trustworthy and explicit method. 

According to results RVIM is capable of reducing the 

size of calculation and it omits the difficulty arising in 

calculating nonlinear intricately terms. When compared 

with other methods, it is clear that RVIM provides 

highly accurate analytic solutions for nonlinear 

problems and the solution is quite elegant and fully 

acceptable in accuracy. 
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