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Abstract: In this study, we investigate the fast algorithms for the Large-Scale Markov Decision Process (LSMDP) 
problem in smart gird. Markov decision process is one of the efficient mathematical tools to solve the control and 
optimization problems in wireless smart grid systems. However, the complexity and the memory requirements 
exponentially increase when the number of system state grows in. Moreover, the limited computational ability and 
small size of memory on board constraint the application of wireless smart grid systems. As a result, it is impractical 
to implement those LSMDP-based approaches in such systems. Therefore, we propose the fast algorithm with low 
computational overhead and good performance in this study. We first derive the factored MDP representation, which 
substitutes LSMDP in a compact way. Based on the factored MDP, we propose the fast algorithm, which 
considerably reduces the size of state space and remains reasonable performance compared to the optimal solution. 
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INTRODUCTION 

 
Smart grid (Li et al., 2010; Moghe et al., 2012; 

Moslehi et al., 2010) is a promising technology to 
improve the efficiency and reliability of the generation, 
transmission and distribution of electricity services. 
Compared to the traditional power grid, it introduces a 
two-way communication network to assist control and 
monitor the electric energy movements. The 
information communication mechanism enhances 
reliably and efficiently control of suppliers and 
consumers in power grids. Due to the time-varying 
nature of wireless channel and the complicated actions 
in smart grid, Markov decision process becomes an 
ideal mathematical tool to model and solve related 
problems in such scenarios. In this study, we focus on 
the MDP-based control and optimization problems in 
wireless smart grid systems. 

In what follows, we survey recent works on the 
MDP-based approaches in wireless communications. Fu 
and Schaar (2010) propose a multi-user Markov 
decision process by considering the video traffic 
characteristics and the time-varying network conditions. 
A decomposition method is proposed to enable each 
wireless user can individually solve its own local MDP 
problem. Niyato et al. (2009) study the QoS 
provisioning problem for multiple traffic types in 
MIMO communications. They model the minimization 
problem of the weighted packet dropping probability as 
a constrained Markov decision process, by which the 

optimal antenna assignment and admission control is 
derived. The transmission power and modulation order 
adaptation  strategies  are  investigated  in  Karmokar et 
al. (2008). The wireless channel is modeled as a first-
order Markov chain. The optimal transmission power 
and rate policies are proposed base on the semi-Markov 
decision process. Phan et al. (2010) present an energy-
efficient transmission policy for wireless sensor 
networks with a strict energy capacity constraint. The 
optimal transmission threshold is derived based on the 
Markov chain model. The condition to perform the 
vertical handoff in the 4

th
 generation wireless 

communication is studied in Lin and Wong (2008). The 
maximization problem for the expected total rewards of 
connection is formulated as MDP.  

However, the complexity of the above MDP-based 
approaches exponentially increases when the number of 
system states grows in, which causes that the problem 
cannot be efficiently solved in practice. In smart grid, 
the wireless systems not only undertake transmission 
tasks but also implement control actions. Furthermore, 
the systems normally have limited computation ability 
and small memory space. Therefore, it is difficult to 
obtain the control policy based on the large-scale MDP 
models in such systems. It is necessary to study the fast 
and efficient algorithms for such problems based on the 
practical wireless smart grid systems. To this end, our 
main contributions in this study are as follows. First, we 
propose the framework of the wireless smart grid 
system and propose the factored MDP, which 
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represents the large-scale MDP in a compact way. We 
derive the fast algorithm based on the factored model, 
which remains good performance compared to the 
optimal solution. 
 

System model: We consider the wireless transmission 

system with energy harvesting devices in smart grid. 

Smart meter is one of the key components in smart grid, 

which is used to control, monitor grids and transmit 

data. In general, smart meters have a limited battery 

capacity and it is inconvenient and costly to replace the 

battery when the smart meters are deployed at 

substations. Therefore, we introduce the energy 

harvesting device into the smart meters, which can 

harvest environmental energy and sustainably provide 

energy support to smart meters. In addition, smart 

meters implement real-time monitoring, which results 

in an instant data delay requirements. The smart meters 

should have the ability to efficiently control the energy 

consumption and to meet the instant delay constraint. 

The basic system model is shown in Fig. 1.  

We assume that the time is divided into slots and 

all system parameters are discretized. The system 

parameters keep stable during each time slot. Let Qt 

denote the data queue state in time slot t, where 0 <Qt< 

Qc and Qt ∈ Q. Let Yt denote the available energy level, 

where 0 <Yt<Yc and Yt ∈ Y. Let gt denote the channel 

state and Et denote the energy harvesting rate in time 

slot t, where, gt ∈ 
 G and Et ∈ E Let St = {Qt, Yt, gt, Et} 

denote the system state in time slot t, where St ∈ S. Let 

Rc denote the required transmission rate and �� 
denote 

the noise power. Let Π denote the control policy. The 

energy control problem is formulated as follows:  
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where the expectation is over the system state and the 

cost function is given by: 

 

( )
t t t

r S a P=                       (2) 

 

where, at denotes the action in time slot t and A denotes 

the action set, we have: 

 

{0,1}
t

a =                   (3) 

 
And 
 

2(2 1) /cR

t tP gσ= −                                                 (4) 

 

The problem (1) is a discount infinite MDP 

problem, which can be solved by value iteration 

(Puterman, 1994). However, the large-scale system 

states make it impossible to solve by the smart meters 

with only limited computational ability and small 

memory space. In the next sections, we will propose the 

factored MDP, which can represent the problem (1) in a 

compact way.  

 
Factored MDP: Factored MDP is a compact 
representation for the original MDP problem. It is 
neither a new formulation nor a solution for the 
problem. However, it has some properties which are 
beneficial for solving the large-scale MDP problem in a 
compact way. It is based on the dynamic Bayesian 
network and can reduce the size of the original MDP 
model from two aspects. First, it uses state variables to 
substitute the system states with identical property. 
Therefore, the system state space is represented by state 
variables. Second, it adopts dynamic Bayesian network 
to characterize the transition probability of system 
states. The dynamic Bayesian network is a directed 
acyclic graphical network based on time sequence. The 
transition matrix is sparse in general. That is, the 
system states in the next time slot are dependent on part 
of system states in the current time slot. Dynamic 
Bayesian network can represent the connection between 
adjacent time slots in a compact way.  

Let X'1, X'2, X'3 and X'4 denote the system variables 
corresponding to the system state Qt, Yt, gt and Et, 
respectively. Therefore, we have: 
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Let {Parent (X'1), Parent (X'2), Parent (X'3), 

Parent(X'4)} denote the parents of {X'1, X'2, X'3, X'4}. 
The transition graph of the dynamic Bayesian network 
is a two-layer directed acyclic graph as shown in Fig. 2.  

The system state St = {Qt, Yt, gt, Et} is substituted 

by four variables {X'1, X'2, X'3, X'4}. In Fig. 1, we have 

Parent (X'1) = {X1, X2}. This is because the data queue 

dynamic depends on the previous queue state and the 

previous available energy level. Each node X'i is 

associated with a conditional probability distribution P 

(X'i| Parent (X'i)). In Fig. 1, hi denotes the basis of the 

value function. Let V(s) denote the value function of 

the system state s S∈ . For the optimal policy *Π , 

we have: 
 

* * * *( ) ( , ( )) ( | , ( )) ( )
s

V s r s s p s s s V s
′

′ ′= Π + Π∑       (6) 

 

where, s S′∈ . Let Vs denote V(s) in (6). The MDP 

problem can convert to the following linear 
programming: 
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Fig. 1: The wireless smart meter system 

 

 
 
Fig. 2: The representation of the factored MDP 
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where α (s) denotes the state relevance weight, which 

should be positive. First, we factor the value function 

and simplify the objection function. Assume that the 

value function can be approximated by the subspace 

which is spanned by the basis function {h1 (x), h2 (x), 

⋯, hk (x)}. We have:  
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Plug the above equation into the problem (7). We 

have: 
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We can further obtain that:  
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Let:  
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We have: 
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The problem (12) has only K variables compared 

to |Q|×|Y|×|G|×|E| state in problem (7). However, the 
number of constraints in (12) is still very large. In the 
next section, we will propose the fast algorithm with 
much less complexity.  
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The fast algorithm via state aggregation: For the 
large-scale MDP problem, the system state space is 
very huge and the transition matrix is sparse in general. 
Factored MDP uses a compact representation to replace 
the original MDP problem. The traditional value 
iteration is then transformed into linear programming. 
Then we use finite linear basis to reduce the free 
variables in the linear programming. Next, we present 
the fast algorithm via system state aggregation to 
further reduce the size of the problem. 

We divide the system states into several groups and 
aggregate the system states in each group into a macro-
state and generate costs among macro states. The policy 
therefore becomes a hierarchical policy. The 
hierarchical policy is a mapping from one macro system 
states to another macro system state. The cost function 
and the transition matrix are based on the macro states. 
We then formulate a reduced MDP problem, which is 
equivalent to the original MDP problem (1).  

The original MDP problem (1) is defined by a four-
tuple set M = (S, A, P, r), where S is system state space, 
A is the action space, P is the transition matrix, r is the 
cost functions. The reduced MDP model is defined by 
M' = (S', A, P', r'), which has the same action space 
with the original MDP model. And S' = {B1, B2, ..., 
BL}, where, 
  

1 2 3 ... LB B B B S∩ ∩ ∩ ∩ =                                     (13) 

 
The transition probability is given by:  
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And the cost function is defined by:  
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Therefore, the stage aggregation method is given as 

follows:  
 

Input: Initial partition b1 = {B1, B2, B3,⋯, BL}, arget 
partition size  
Output: Target partition {B1, B2, B3, ⋯, BL}′  
 

• Initialize: bt = b1 

• While (current size <= target partition size) do 

• For every block in partition bt do 

• Further partition the related block 

• End 

• End  

• Return: The target partition {B1, B2, B3, ⋯, BL}′   
 

After we divide the system state space, we implement 

the approximate linear programming to obtain the 

policy. In the next section, we will show the simulation 

results of the proposed algorithm.  

SIMULATION RESULTS 
 

In our simulation studies, the length of the time slot 
is set as 5 ms. We consider the channel experience the 
Rayleigh fading. The Doppler shift is set as 10 Hz. The 
channel fading is characterized by 4 states. We assume 
that the required SNR is fixed. Therefore, there are 4 
types of transmission powers. The data queue length is 
set as 3. The packet arrival process is set as a Poisson 
process with rate 0.1. We assume that one packet can be 
sent during one time slot. The energy buffer length is 
set as 80. The energy harvesting dynamic is 
characterized by 3 states. The energy harvesting trace is 
shown in Fig. 3. Therefore, the total number of system 
states is 2880. We run 1000 realization of the channel 
with 10 min.  

We compare the proposed fast algorithm to the 
exact value iteration algorithm. The exact value 
iteration algorithm provides the optimal solution of the  
 

 
 

Fig. 3: The energy harvesting trace in 10 min 

 

 
 

Fig. 4: Action comparison between the optimal solution and 

the proposed solution  
 
Table 1: Computational performance comparison between the optimal 

solution and the proposed solution 

 
The optimal 
solution 

The proposed 
solution 

Number of system states 2880 68 
CPU time (sec) 850.3594 0.3750 
Accuracy 100% 93.8000% 
Energy consumption (J) 0.0138 0.0144 
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problem (1). Figure 4 shows the actions of the optimal 
solution and the proposed solution for all system states. 

It is shown that the proposed algorithm takes 
identical action as the optimal solution most of the time. 
The action accuracy reaches 93.8% compared to the 
optimal solution. Next, we compare the size of the two 
methods  and  the computational time as shown in 
Table 1. The proposed solution has much smaller 
number of system states and the computational time 
period is very short compared to the optimal solution. 
In addition, the energy consumption and the accuracy 
remain good performance similar to the optimal 
solution.  

 
CONCLUSION 

 
In this study, we have proposed the fast algorithm 

for large-scale MDP in the wireless smart meter 
systems. We first addressed the compact representation 
problem for the large-scale MDP. Based on the factored 
MDP representation, we then proposed the state 
aggregation algorithm, which can largely reduce the 
size of the original problem with very low complexity. 
Extensive simulation results have verified the good 
performance of the proposed scheme.  
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