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Abstract: Wireless communication requires accurate Channel State Information (CSI) for coherent detection. Due 
to the broadband signal transmission, dominant channel taps are often separated in large delay spread and thus are 
exhibited highly sparse distribution. Sparse Multi-Path Channel (SMPC) estimation using Orthogonal Matching 
Pursuit (OMP) algorithm has took advantage of simplification and fast implementation. However, its estimation 
performance suffers from large Mutual Incoherent Property (MIP) interference in dominant channel taps 
identification using Random Training Matrix (RTM), especially in the case of SMPC with a large delay spread or 
utilizing short training sequence. In this study, we propose a MIP mitigation method to improve sparse channel 
estimation performance. To improve the estimation performance, we utilize a designed Sensing Training Matrix 
(STM) to replace with RTM. Numerical experiments illustrate that the improved estimation method outperforms the 
conventional sparse channel methods which neglected the MIP interference in RTM. 
 
Keywords: Mutual Incoherent Property (MIP), Orthogonal Matching Pursuit (OMP), Sensing Training Matrix 

(STM), sparse channel estimation  

 
INTRODUCTION 

 
In the last decades, how to overcome the scarcity 

of spectral resource to meet the ever-growing need for 
high data rate was a great challenge for communication 
engineers. One way to achieve a high-rate data is to 
simply increase the transmission speed. Due to the time 
delay spread of multi-path channel, the channel impulse 
response easily spans several hundred symbol intervals. 
If standard linear channel estimation is used, current 
training sequence is generally short to provide accurate 
channel estimation which is shown in Fig. 1. 
Fortunately, Sparse Multi-Path Channel (SMPC) model 
as shown in Fig. 2, is frequently encountered in 
wireless communication applications, such as terrestrial 
transmission channel of High Definition Television 
(HDTV) signals (Schreiber, 1995), hilly terrain delay 
profile of multi-path in the broadband wireless 
communication (Ghauri and Slock, 2000) and typical 
underwater acoustic channels (Kocic et al., 1995). 

Among the large number of SMPC entries, only a small 
portion is significantly different from zero. Taking 
advantage of the sparsity, impulse response of SMPC 
can be recovered from relatively small number of 
received data and training data with sparse channel 
estimation method (Cotter and Rao, 2002) which is 
shown in Fig. 3. Mathematically, sparsest channel 
estimation can be obtained by solving the l0 sparse 
constraint problem (Donoho, 2006). However, finding 
the sparsest solution is an NP-Hard combinatorial 
problem (Donoho, 2006; Candes et al., 2006). 

In order to find a suboptimal but sufficient sparse 
solution, several greedy algorithms (Cotter and Rao, 
2002; Carbonelli et al., 2007) and convex relaxation 
methods (Gui et al., 2008; Bajwa et al., 2008; Taubock 
and Hlawatsch, 2008) have been proposed. Instead of 
representing the received signal as accurate as possible 
by channel impulse response weighted superposition of 
the transmitted signals, they have available a redundant 
dictionary and their goal is to obtain not only accurate 
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Fig. 1: Framework on traditional linear channel estimation 

 

 
 

Fig. 2: A typical example of sparse multipath channel 
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Fig. 3: Framework on sparse channel estimation 

 

but also the sparsest possible representation of the 

received signal from that over-complete dictionary. 

Convex relaxation based sparse channel estimation 
methods are resolved by linear program, their 

complexity is very high and hard to implement on real 

time practical wireless communication (Gui et al., 

2010). Among these greedy suboptimal methods, 

Matching Pursuit (MP) algorithm can provide a very 

fast implementation of sparse approximation (Mallat 

and Zhang, 1993; Donoho and Huo, 2001). It has been 

inspiring for many researchers and different variations 

of this algorithm were proposed. The most famous one 

is Orthogonal Matching Pursuit (OMP) algorithm 

(Tropp and Gilbert, 2007). Using OMP, the 

convergence problem in MP algorithm based on 
reselection of the atoms is eliminated. It was also 

verified that by avoiding the re-selection problem, more 

accurate channel estimates can be obtained by using the 

OMP algorithm (Karabulut and Yongacoglu, 2004). 

However, according to the sufficient condition 

developed by (Tropp and Gilbert, 2007; Cai and Wang, 

2011), both the suboptimal algorithms (i.e., MP and 

OMP) suffer from Mutual Incoherent Property (MIP) 

(Donoho and Huo, 2001), interference due to coherency 
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and redundancy of equivalent training matrix, 
especially in the case of SMPC with either large time 

delay spread or relatively small number of training data 

and received data. As a result of large MIP, we may 

either choose a false position when the associated entry 

of SMPC is zero or omit a correct position when the 

associated entry is nonzero. 

Hence, it is necessary to develop a method which 

can mitigate MIP interference on sparse channel 

estimation or other sparse signal recovery field. In our 

previous research (Gui et al., 2011), we have proposed 

a sensing matrix designing method for sparse signal 

recovery based on the OMP algorithm in real-valued 
domain. However, most of the communication systems 

work in complex-valued domain. Moreover, only the 

feasibility of our proposed method in Gui et al. (2011) 

was confirmed by computer simulations.  

In this study, we propose a MIP-mitigated method 

to improve the performance of SMPC estimation based 

on the OMP algorithm. Unlike the traditional OMP 

based sparse channel estimation, we analysis the sparse 

channel estimation problem which is interfered by MIP 

in training matrix. To alleviate the MIP on sparse 

channel estimation, we design a novel sensing matrix 

by using convex optimization algorithm. On the taps 

identification process, the sensing matrix is utilized 

efficiently to prevent false positions from being 

selected due to the mitigated MIP. Numerical 

experiments illustrate that the performance of the 

proposed method based on MIP mitigation is better than 

that of the ordinary sparse channel estimation. 

 

System model: Consider a broadband communication 

system between two single-antenna transceivers over a 

wireless sparse multipath channel. The input-output 

system relation is described by: 

 

max

0
( ) ( ) ( ) ( ),y t h x t d z t



    
          (1)

 

 

where, ( )y t  and ( )x t  denotes the transmitted and 

received waveforms, respectively and max  is defined as 

the maximum possible dominant taps delay spread 

introduced by the channel. And ( )z t  is a zero-mean 

complex Additive White Gaussian Noise (AWGN). 

Commonly, such kinds of communication channels can 
be characterized as discrete, linear, time-invariant 

system which is shown in Fig. 1. Hence, the discrete 

equivalent circulant convolution system model is 

written as matrix-vector form: 

 
lin lin lin lin ,    y x h z X h z              (1) 

where, ylin denotes ( 1)-dimensionalM N   received 

signal vector and zlin is ( 1)-dimensionalM N   Gaussian 

noise samples with zero mean and variance 2

1n N M  I , h 

is N-length sparse channel vector which is supported by 

K dominant nonzero taps, i.e., 
0

Kh , lin
X  denotes 

linear convolution training matrix: 
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It was worth noting that either the training signal or 
the impulse response could be rewritten as a linear 

convolution matrix in the above formulation. Writing it 

in this way, we can cast the channel estimation problem 

into the canonical CS framework. The channel 

estimation problem in this case reduces to 

reconstructing the unknown impulse response h from 

equivalent system model: 

 

y X h z= +                                             (3) 

 

where, 1 2[ , ,..., ]TMy y yy is -lengthM observed signal 

vector; 1 2[ , ,..., ]TMz z zz = denotes an complex additive 

white Gaussian noise with zero-mean and covariance 

𝜎𝑛
2𝐼𝑁; 1 2[ , ,..., ]NX x x x=  is a partial Toeplitz matrix of 

the form: 
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Sparse channel estimation using OMP algorithm: In 

practical environments, most of wireless channels have 

the inherent sparse structure. By exploiting this 

sparsity, we can improve the performance or utilize 

smaller number of training sequence (M×N) to estimate 

sparse channel, which is corrupted by observation 

noise. OMP is a canonical greedy algorithm for sparse 

channel estimation with the over-complete equivalent 

training matrix given that M×N (Tropp and Gilbert, 

2007). OMP-based sparse channel estimation combines 
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the simplicity and the fastness. Hence, it is easy to 

implement in practice. Currently, there exist two kinds 

of theoretical analysis tools of OMP, namely Mutual 

Incoherence Property (MIP) (Cai and Wang, 2011) and 

Restricted Isometry Property (RIP) (Candes, 2008). In 

this study, we choose the MIP as for analysis tool on 

OMP-based sparse channel estimation, for the sake of 

easy be interpreted by numerical simulations. Sparse 

channel estimation method using OMP algorithm has 

been proposed in (Karabulut and Yongacoglu, 2004). It 

selects a column of training matrix which has the most 

correlation with current residuals at each step. Hence, 

the chosen tap position is added into the set of selected 

position. The algorithm updates the residuals by 

projecting the signal onto the variables which have 

already been selected and then the algorithm iterates. 

Commonly, the detail steps of the OMP-based sparse 

channel estimation are described in Table 1. For the 

later use, we define all of taps position set as 

{1,2,..., }  N . If the method can identify dominant 

channel taps subset supp( ) #{ 0, }nK h n   h , 

then the channel can be easily estimated, for example, 

by using the Least Squares (LS) to estimate the subset 

of channel. Hence, accurate channel tap positions are 

most important on sparse channel estimation using 

OMP algorithm. 

From the Table 1, after k-th iteration, the k-th dominant 

taps position wk of the channel { , }nh n h  can be 

identified by: 

 

1

1 1

1

1

\ \

\ \

arg max

arg max

arg max

arg max

k

k k

k k k k

H

k k
n

H H H

k
n

H H

n

H H H

w w
n

w



 




 


   


   




  

 

  

X r

X X h X X h X z

X X h X z

X x h X X h X z

(5) 

 

and then update k-th selected subset  1k k kw  . 

From above Eq. (6), we can find that the smaller value 

of \ \k k

H H

    X X h X z , higher accurate probability 

to identify k-th position wk, vice versa. The noise 

interference XH
z is decided by the communication 

environment and transmit power. In this study, we only 

consider coherence interference on sparse channel 

estimation under the same noise interference. To 

evaluate the coherence in X, we introduce a widely 

used Mutual Incoherence Property (MIP) (Cai and 

Wang, 2011). For a given 
1 2[ , ,..., ]NX x x x , its MIP is 

defined as: 

, ,
( ) max , .n l

n l n l


 
X x x                                (6) 

 

The MIP requires the mutual incoherence µ in X to 

be small. Given a M N  equivalent training matrix X, 

where 40M   and 64N  , its MIP is depicted in Fig. 

4. From the figure, we can find that some MIPs in X is 

even larger than 0.4 and hence lead to stronger coherent 

interference to identify dominant channel taps. Herein, 

in Eq. (6), if \ k h  is a zero vector, then MIP 

interference cannot effect the taps identification and 

estimation performance. However, if there is a nonzero 

entry in \ k h , the MIP of \ k X  will draw the tap 

position kw  away from its correct position wk. As a 

result, we may either select a false tap position if the 

MIP is large enough. Hence, the improved estimation 

performance is that how to mitigate the coherent 

interference of MIP on the performance of OMP 

algorithm. 

 

MITIGATE MIP TO IMPROVE SPARSE 

CHANNEL ESTIMATION 

 

In order to identify the correct position in the case 

of high MIP level, we resort to the OMP based on 

sensing matrix W and use 
1max H

k n kw   W r rather 

than 
1max H

k n kw   X r  in Eq. (5). Based on the 

training matrix X, we design a novel sensing matrix W 

using convex optimization method (Boyd and 

Vandenberghe, 2004). Consider the M N  complex 

training matrix X, where , 1,2,...,n n Nx  denotes its 

n-th column vector and assume that each column of X 

is normalized so that 
2

1n x . We define 
KX  as a 

submatrix of X for any subset 
K

X  and term xk and 

KX  as k-th column and selected wk-th column of X, 

respectively. 

Now the question is how to mitigate this coherent 

interference in the OMP algorithm. We calculate the 

coherence between columns in X as shown in Fig. 4. 

We find that most diagonal coefficients are close to 1 

and some of off-diagonal coefficients are larger than 

0.4. Therefore, these off-diagonal coefficients easy 

result in interference while selecting the optimal 

column in the measurement matrix. Hence, it is 

necessary to mitigate the coherent interference in taps 

identification. To mitigate the interference, we design 

the SMM for OMP in the next section.  
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 Table 1: Sparse channel estimation method using orthogonal matching pursuit algorithm (Karabulut and Yongacoglu, 2004) 

Input 

 

An M N  training matrix X 

An 1M   received signal vector y 

An stopping criterion   

Output 

 
An dominant taps position set   

An 1N  sparse channel estimator ĥ  

Initialization 
0 r y , 

0 h 0 , 0  , 1k   

Iteration Repeat the following steps: 

While 
k r , run 1k k   

Taps identification 
1arg max H

k n n kw   X r , 
1 { }k k kw   

Residual updating 
2

argmin
kk  h y X h , 

kk k r y X h , 
k    

 

 
 

Fig. 4: Coherence in random training matrix X 

 

 
 
Fig. 5: Coherence in between random training matrix X and 

sensing matrix W 
 

Table 2: Design a sensing matrix W based on the random training 

matrix X 
Input 

 
An M N  training matrix X 

An regularization parameter λ 

Initialization X = X, Q = WHX; q = Diag{Q}, G = Q – diag{q} 

Optimization 
1min{ } subject to NF

 
 G W q I    

Output An M N  sensing matrix W. 

Table 3: Mitigated MIP sparse channel estimation method using 

orthogonal matching pursuit algorithm 

Input 

An M N  random training matrix X 

An 1M   received signal vector y 

An stopping criterion   

Output 

 
An dominant taps position set K  

An 1N   sparse channel estimator ĥ  

Initialization 
0 r y , 

0 0h , 0  , 1k   

Iteration Repeat the following steps: 

While 
k r , Run 1k k   

Sensing designing W is given in Table 2. 

Taps identification 
1arg max H

k n n kw   W r  

1 { }k k kw   

Residual updating 
2

argmin
kk  h y X h

kk k r y X h , 
k    

 

In order to identify the correct components in a 

training matrix X, the improved OMP algorithm 

designs     an     M N    complex   sensing   matrix 

{ , 1,..., }n n N W w  and uses arg max ,k kw  W r  rather 
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than arg max ,k kw  X r  in OMP-based sparse channel 

estimation. Obviously, when W = X, the sparse channel 

estimation using OMP algorithm is a special case of the 

improved sparse channel estimation. 
A good sensing training should have a µ(W, X) as 

small as possible. In a straightforward way, we may 
calculate the correlation between X and W, i.e., the 

sensing vector ,n n w , as the solution to the 

following convex optimization problem in Table 2. The 
maximum coherence in off-diagonal between X and 
W is no more than 0.2 as shown in Fig. 5. Hence, the 
sensing matrix W can effective mitigate the coherent 
interference on sparse channel estimation. The 
proposed sparse channel estimation using OMP 
algorithm is summarized as in Table 3. 
 

NUMERICAL SIMULATIONS 
 

To gain some insights into the effect of the proposed 
improved sparse channel estimation method using OMP 
algorithm. We evaluate 10000 independent Monte-
Carlo trials. The dominant taps of sparse multipath 
channel h are generated randomly from a complex 

Guassian distribution and subject to 
2

2
1h . The 

positions of dominant channel taps of h are generated 
randomly. The channel length is set to 64N   and the 

length of training sequence x is set to 48M  . Hence, 
the X equivalent to the M N  partial Toeplitz matrix 
which is generated by x. Consider the received Signal-
to-Noise Ratio (SNR) as: 
 

 2SNR 10log S nP                                (8) 

 
where, PS is the average transmitted power. The 
performance comparison of accurate taps identification  
 
 

 

 

 

 
 

 

 

 

 

 

 

 

 
 
 
Fig. 6: CDF verses number of dominant channel taps at SNR; 

20 dB 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
Fig. 7: CDF verses number of dominant channel taps at SNR; 

20 dB 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
Fig. 8: CDF verses number of dominant channel taps at SNR; 

30 dB 
 

via Cumulative Density Function (CDF). From the Fig. 
6, 7 and 8, at the different SNR (from 10 to 30 dB), the 
proposed method has a more accurate probability than 
ordinary sparse channel estimation method on dominant 
channel taps. It was worth noting that LS-based linear 
channel estimation method failed identify accurate 
dominant taps under the underdetermined system. 
Hence, several LS-based taps identifying CDF curves 
almost overlap in the Fig. 6, 7 and 8. 

 

CONCLUSION 
 

Sparse channel estimation using OMP algorithm is 

good candidate for broadband communication systems. 
However, OMP-based estimation is often degraded due 

to the large MIP exiting in training matrix. In this study, 
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we proposed a MIP-mitigation method to improve the 
sparse channel estimation performance especially in the 

case of sparser and longer SMPC. The numerical 

experiments indicate that the proposed MIP-mitigation 

method outperforms the ordinary sparse channel 

estimation method using OMP algorithm. 
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