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Yujiao Liu, Chuanwen Jiang, Guiting Xue and Jingshuang Shen 
Department of Electrical Engineering, Shanghai Jiaotong University, Dongchuan Road 800, 
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Abstract: A short-term Economic Dispatch (ED) model with risk constraint for wind penetrated power systems was 
built to face the challenge of scheduling spinning reserves brought from wind energies. The proposed model utilizes 
the probability of spinning reserve shortage as measurement of system risk and evaluates the risk by an Unequal 
Probabilities Sampling based Monte Carlo (UPSMC) method. A Genetic Algorithm (GA) improved with Simulated 
Annealing (SA) strategy is presented as SAGA to solve the problem. By comparing simulation results under 
different wind penetrations and risk constraints, coal consumptions will not always decrease with wind penetration 
and risk constraint but for most times. In addition, unit risk benefit has a trend to increase with wind penetration and 
decrease with risk constraint while contribution of unit wind generation has the contrary character. Simulation 
results also show that the proposed sampling method could improve the sampling efficiency and the SAGA method 
had better performance than traditional GA. 
 
Keywords: Economic dispatch, genetic algorithm, monte carlo method, stochastic constraint, unequal probability 

sampling, wind energy 

 
INTRODUCTION 

 
The rapid increase of wind power penetration 

brings challenges to power systems especially for ED 

for the uncertainties of wind generations. ED consists 

of several phases and challenges in each phase would 

be different. For real-time ED, system requires 

considerable fast response generations or other power 

sources to settle the volatility of wind speeds in 5 to 10 

min. For short-term ED, the main challenge is from the 

forecasting error of wind speeds, which might cause the 

spinning reserve shortage. Specifically, to satisfy loads 

with appropriate spinning reserves is the main duty of 

short-term ED in order to insure both economy and 

safety of power system. Short-term ED makes decisions 

based on forecasting values of wind speeds and loads, 

but forecasting values cannot match real ones at most 

times. Therefore, the spinning reserves determined by 

scheduling plan might be insufficient for system 

operating if they cannot satisfy the demand of large 

forecasting errors. Because the above reason, wind 

generations are not good power resources comparing 

with thermal generation from the perspective of ED. 

Nevertheless, system would prefer to utilize wind 

power as more as possible for they could offer clean 

energy and they are more reliable than other renewable 

energies.  

However, traditional short-term ED model did not 
consider  forecasting  errors  of wind power and those  
errors cannot be ignored since more and more wind 
power are integrated into electric power system 
(Miranda and Hang, 2005; Mangueira et al., 2008). 
Based on the challenge of wind generation, risk 
managements of power systems with wind generations 
gained great attentions in recent years. Wind 
generations usually make larger outputs during valley 
times of loads, hybrid power of wind and hydro can 
reduce risks of wind generations (Denault et al., 2009), 
but it is hard to carry out in water-stressed areas. 
Without extra reserves for wind energy, load-carrying 
abilities of wind generations would have a considerable 
difference with their average outputs (Billinton et al., 
2009), which means a waste of clean energy. Utilized 
extra spinning reserves to increase wind penetration and 
to insure the security of system will be the choice for 
most power systems (Lu et al., 2008; Montes and 
Martin, 2007; Doherty and O'Malley, 2005). Extra 
reserves will hike up system cost, so ED programs need 
to balance the economy and safety. A two-objective ED 
model was built to balance the risk and cost in study 
(Lingfeng and Singh, 2008) and the authors assumed 
that system risk is a function of wind power penetration 
and system cost in their research. Algorithms of ED 
also obtained many attentions. In previous researches, 
ED problems mainly adopts the dynamic programming 
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algorithm (Al-Kalaani, 2009), the priority order 
method, Genetic Algorithm (GA) (Amjady and 
Shirzadi, 2009; Dudek, 2007) and particle swarm 
optimization (Kumar et al., 2011; Wang and Singh, 
2009). Generally, it is necessary to assess and control 
risks for ED of power system with wind generations to 
utilize wind energy economically and safely.  

This study aims to satisfy the demand of risk 
management of power systems with large scale wind 
energy by proposing a risk reserve constrained ED 
model. The proposed model utilizes the probability of 
lacking spinning reserve as the measurement of system 
risk (Zhou et al., 2010) and assesses it with improved 
Monte Carlo method; and the challenge of nonlinear 
optimization and stochastic constraint are solved by the 
proposed SAGA method. 

 
METHODOLOGY 

 
ED model with risk constraint: The objective 
function was the coal consumptions and was given by: 

 

( ){ } ( )
24

1 1

min ( )
Ng

i i i i

t i

f f P t S t U t
= =

= + ⋅  ∑∑               (1) 

 

Constraints of the model are as follow: 
Active power balance constraint of system is 

expressed as Eq. (2): 
 

( ) ( ) ( ) ( )
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Ng Nw
T w

i i j

i j

P t U t P t PL t
= =
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Unit ramp rate constraints of every generators need 

considering in the model, as in Eq. (3): 
 

( ) ( )1T T

i i i iDR P t P t UR≤ − − ≤                   (3) 

 

All generations’ commitments cannot outrage of 
their abilities: 
 

( ) ( ) ( ) ( )min, max,

T T T

i i i i i iP U t P t U t P U t⋅ ≤ ⋅ ≤ ⋅        (4) 

 
System risk measured by the probability of 

spinning reserve shortage cannot exceed the setting 
value: 
 

{ }{ }Pr max , 0up down

reserve reserveRisk P P P P r= ∆ − ∆ − > ≤   (5) 

 
Risk evaluation with UPSMC: As mentioned before, 
risk evaluations utilize UPSMC method. Monte Carlo 
method has already successfully solved the reliability 
and risk evaluation of complex system (Georgopoulou 
and Giannakoglou, 2010; Wu et al., 2008). However, 
traditional Monte Carlo faces an efficiency conundrum 
in reserve risk evaluations of wind power integrated 
system: it requires a huge number of sampling times to 
get stable sampling result. Reason of this problem is as 
follow: 

Traditional Monte Carlo method adopted Same 
Probability Sampling (SPS) as the sampling method. 
SPS treats all samples equally in the sampling process, 
which means the selection probability of sample in each 
sampling is the same with its distribution probability. 
SPS would make good performances when all samples 
make equal contributions to sampling result. 
Nevertheless, extreme forecasting errors are the main 
reason of reserve risks. SPS method needs many 
sampling times to sample those samples in most cases 
for their sampled probabilities are small, which leads a 
large number of sampling times to acquire their 
contributions to get the risk value.  

UPS method could improve sampling efficiency of 
traditional Monte Carlo method in the above situation. 
UPS utilizes another probability distribution of samples 
instead of the original one or adding a sampling 
probability instead of treating all individuals equally in 
sample space to pay more attentions on those small 
probability samples but with decisive contributions to 
the result (Qualite, 2008). In this way, those small 
probability but important samples could make their 
contributions to sample result in lower sample times 
than SPS. The sampling result needs to be restored in 
the final estimation (Dubnicka, 2007; Carrizosa, 2010). 
This study uses average distribution instead of initial 
distribution of wind speeds in stochastic sampling. 
Steps of risk assessment with UPSMC method are as 
follow: 
 
1) Obtain the forecasting errors distributions of wind 
speeds and loads from history data, 2 volatility ranges 
for speeds and loads prediction errors are defined as: 

 

 
min max,j jEv Ev ∆ ∆  and [ ]min max,EL EL∆ ∆   

 

2) A ( )jEv t∆  could be randomly generated from the 

above volatility ranges based on the average 
distribution. The corresponding wind speed could be 
evaluated as Eq. (6), which would have the same 
probability density with its forecasting error. Loop the 
step for all scheduling periods, which are 24 h in a day 
in this study: 
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3) Convert the wind speeds forecasting errors to the 

ones of wind power
, ( )w jP t∆  

by Eq. (7): 
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4) Generate forecasting errors of loads for all 24 h by 

utilizing the same method with wind speeds 
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5) Compute the sampling result. The reserve will be 

considered insufficient and the sampling result Nr will 

be 1 if the following inequalities are true, otherwise Nr 

will be 0 
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                               (8) 

6) Restore the sampling result as Eq. (9): 

 

( ' ')speed load speed loadNr p p p p Nr′ = ⋅ ⋅ ⋅              (9) 

 

7) Suppose current sample times are Ns, calculate the 

frequency of reserve insufficient as Eq. (10): 

 

1

Ns

m

m

Fr Nr Ns
=

′= ∑                                           (10) 

 

8) Iterate Step 2) to 7) until matching the termination 

criterion. The stop criterion in this study is that the 

variation of Fr is no more than 10
-5
 in continuous 100 

times or iteration time matches 10
6
. Utilize the final 

value as the risk value of the evaluated plan 

 

Solutions of ED model with SAGA: 

Main optimization: This study applies a hybrid 

method of GA and SA programs as main optimization 

algorithm (Yildirim et al., 2006; Shi, 2009). The 

proposed program adopts the objective function as the 

fitness function. Comparing with traditional GA and 

SAGA could improve global search capability of GA 

by shrinking differences of surviving probabilities 

between poor and excellent individuals in early 

generations and enlarging it in late stage. Specifically, 

individuals will be selected to the next generation with 

the following probability: 

 

{ }minPr exp ( )sv if f Te= − − , ( )ncoolTe T R= ⋅  (11) 

 

By an appropriate initial temperature, Te could 

shrink the difference of 
minif f−  in the initial stage of 

SAGA. The reduction effect could increase the 

diversity of populations to avoid the premature 

convergence and local optimum. In the late stage, Te 

will be far smaller than 1 generally, which could make 

a large difference of selected probabilities between 2 

individuals even when their fitness values are close 

with each other. The magnification could keep powerful 

natural selection ability to accelerate the convergence 

speeds in late stage.  

Generally, comparing with the traditional selection 

method, the proposed selection method owns some of 

their advances together, such as insuring the best 

individual into next generation, keeping diversity in 

early iterations and powerful natural selection ability in 

late periods.  

Except the SA strategy in selection method, the 

proposed algorithm adopts decimal code, float point 

mutation and one point crossover strategies. Besides, 

the mutation and crossover rates are adaptive based on 

performances of generations by
i
f  in Eq. (11). 

Encoding for unit commitments is as Eq. (12), in which 

genes could directly stand for the outputs of thermal 

generations: 
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Settling of constraints: Constraints 1-3 are linear or 

boundary limits, individuals could satisfy them by 

adjusting their genes. For constraint 1, the stochastic 

adjustment while is as follow: 

 

1) Let ( ) ( ),
1

Ng

i t
i
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=

∆ = + −∑  

 

2) Verify the termination condition as ε∆ ≤ , in where 

ε  is the threshold value and if validated then terminate 

else go to step (3) 

3) Randomly select an j from [1, Ng] and refresh 
,j t

P  as 

Eq. (13) and then go to step (1): 
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For constraints 2) and 3), program will forcibly 

change the outraged gene in the process of generating 

new individuals. For example, if 
,i tG of a new individual 

is larger than its maxim value, the program would 

utilize the maxim one as its value. Simply stochastic 

adjustment cannot resolve risk constraint effectively for 

its complexity. This study added a penalty term in the 

objective function to solve this constraint, as shown in 

Eq. (14):  
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A penalty coefficient multiplies by the outage risk 

makes the penalty term in Eq. (14). Since risk value is 
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far less than objective function, the penalty term affects 

the optimal process only when the punishment 

coefficient is large enough. However, a large penalty 

coefficient would reduce the diversity of populations. 

The SAGA utilized SA strategy to solve the problem. 

SA strategy plays a similar role in risk penalty term as 

in individual saving problem. As shown in Eq. (15), it 

provides a small penalty coefficient of risk outraged 

plans when Te is large at the beginning of GA. This 

would allow scheduling plans over limit at first, which 

would enrich the populations to avoid precocious of 

GA. Punishment of outraged individuals would increase 

as Te becoming small to accelerate the obliterating 

speed of those out limit individuals. Generally, SA 

strategy improves GA by insuring diversity of 

populations in the initial stage while controlling 

eliminating speed of poor and individuals in the late 

stage: 

 

_

/ r

0 r

initial

P Risk R Risk

R Te Risk
R

Risk

= ⋅

>
= 

≤

               (15) 

 

System cannot always satisfy risk constraint when 

the installed capacity of wind generation is too large. 

The proposed ED model adopts shutting down some 

wind generations in this situation for the sake of 

security.  

 

Process of SAGA: According to the above description, 

all steps of SAGA with constraints are as follow:  

 

• Read the initial data, including parameters of 

generations, history and forecasting data of wind 

speeds and loads, parameters of GA and simulated 

annealing algorithm. 

• Randomly create initial population and adjust all 

individuals to meet the power balance, unit ramp 

rate and output constraints. 

• Assess risks of initial individuals. 

• Compute the fitness function values and sort 

individuals by them. 

• Validate termination conditions of maximum 

iteration and convergence precision, if satisfied go 

to step 6; else go to Step (7). 

• Validate risk constraint of result of Step 5, if 

satisfied terminate programs and export result, else 

shut down one wind generation of the wind farm 

and go to Step (2). 

• Calculate crossover rate and mutational rate. 

• Carry the crossover and mutation process and 

adjust new individuals to meet linear and boundary 

constrains. 

• Assess risks of new individuals. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1: Forecasting data of wind speeds and loads 

 

 
 
Fig. 2: Probability distribution of load forecast error 

 

 
 
Fig. 3: Probability distribution of wind forecast error 

 

• Compute the fitness function values of new 
individuals and sort all individuals. 

• Select individuals with SA strategy to derivative 
next generation and go to Step (5). 
 

Inputs and parameters: Use a system with 10 
generators as the test system, parameters of the system 
are as reference (Sun et al., 2006). The total installed 
capacity of generations in the system is 1962 MW. As 
comparison, the study carried simulations under 
different installed capacities of wind farm from 0 to 600 
MW. Figure 1 shows the utilized wind speeds and loads 
data. By utilizing the history data of Shanghai, Fig. 2 
and 3 show the distribution of forecasting error of loads 
and wind speeds. Table 1 shows parameters of SAGA.
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Table 1: Parameters of presented algorithm 

Parameters Population size Convergence precision Minimum crossover  Minimum mutation  Rinital PWG 

Value 100 0.001 0.4 0.05 10 5 

Parameters Maximum iteration  Maximum crossover  Maximum mutation  Rcool T  

Value 5000 0.8 0.2 0.9 10  

 

Table 2: Comparison of two sampling methods under different 

precision levels 

Accuracy 
Sampling 
method Sampling times 

Efficiency 
ratio 

10-4 I 5058 22.1% 

II 1119 
10-5 I 20155 20.6% 

II 4163 

10-6 I 45226 29.3% 
II 13248 

10-7 I 332312 26.6% 

II 88340 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4: Coal consumptions under different risk levels 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5: Risks of optimization results in each generation 

 

RESULTS AND DISCUSSION 

 

Methods with SPS and UPS have been both carried 

in risk evaluation for comparison. Table 2 shows 

average sample times of the 2 methods in different 

accuracy levels. Method I accords to the original 

probability distribution, the methods II is the sampling 

method used in the designed program.  

According the results shown in Table 2, for the 

utilized   probability   distributions  of  loads  and  wind 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6: Coal consumptions of different risk constraints under 

different wind penetration 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7: Coal consumptions of different wind penetration under 

different risk constraints 

 

speeds, the UPSMC decreases the numbers of sample 

times to 20~30%, respectively.  

In order to compare and discuss simulation results, 

the program utilized series of risk levels as inputs and 

solved ED with different methods. Figure 4 shows the 

coal consumptions under different risk levels with 300 

MW installed wind generation based on the presented 

algorithm and the general GA, which would not contain 

SA strategy and with fixed crossover and mutation rate. 

The results show the improvement of SAGA comparing 

with general GA.  

Figure 5 shows the risks of the best individual in 

every generation under risk constraints of 0.02 and 

0.04. Comparing with GA, SAGA would allow 

individuals outrage of risk constraint in order to keep 

diversity of population.  The results in late iterations all 

met risk constraints, which prove that the proposed ED 

model has the ability to control system risk. 
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Table 3: Scheduling strategy of thermal generations under risk constraint of 0 and 0.l 

Time 

Outputs of thermal generations [MW] 
------------------------------------------------------------------------------------------------------------------------------------------------------------ 

G1 
------------------------------- 

G2 
-------------------------- 

G3 
---------------------------- 

G4 
------------------------ 

G5 
---------------------------- 

0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 

0 0 0 331.84 367.00 0 0 0 0 35.150 0 
1 0 0 317.02 382.00 0 0 0 0 42.850 0 
2 187.48 198.82 290.86 304.59 0 0 0 0 25.110 0 
3 195.27 397.76 373.74 197.14 0 0 0 0 25.970 0 
4 375.16 454.03 281.58 227.88 0 0 0 0 25.240 0 
5 441.32 454.66 322.55 334.76 0 0 0 0 25.680 0 
6 411.21 454.67 421.00 407.39 0 0 85.650 88.850 33.080 0 
7 407.95 454.64 380.02 356.52 0 0 80.970 127.26 69.570 0 
8 448.92 454.89 451.33 433.17 0 98.900 129.82 128.35 87.500 25.110 
9 454.87 454.76 454.87 443.86 0 128.21 129.35 128.87 110.91 72.720 
10 438.02 454.97 455.00 455.00 0 129.92 62.420 129.98 160.91 122.58 
11 449.93 454.82 443.15 454.73 0 98.720 122.28 129.80 134.69 115.87 
12 418.18 454.94 450.54 454.74 0 0 124.28 129.88 141.75 160.35 
13 421.03 451.25 440.53 442.23 0 0 49.450 83.510 146.43 110.42 
14 401.89 454.95 347.40 454.48 0 0 123.90 0 101.33 64.990 
15 440.48 455.00 294.51 378.69 0 0 73.030 0 51.940 26.210 
16 435.46 450.65 211.67 228.73 0 0 0 0 57.280 25.020 
17 339.56 326.26 318.11 329.57 0 0 0 0 45.240 47.140 
18 432.21 453.60 419.10 439.95 64.29 0 0 0 72.840 94.900 
19 435.29 454.98 448.94 454.99 77.76 0 75.430 0 62.550 144.76 
20 371.41 452.78 451.97 411.12 0 0 46.560 0 88.990 95.010 
21 397.23 398.11 314.77 312.71 0 0 0 0 43.950 45.070 
22 315.51 198.42 202.42 344.49 0  0 0 25.020 0 
23 258.31 0 162.01 445.50 0  0 0 25.090 0 

Time 

Outputs of thrmal generations [MW] 
------------------------------------------------------------------------------------------------------------------------------------------------------------ 

G6 
------------------------------- 

G7 
-------------------------- 

G8 
---------------------------- 

G9 
------------------------ 

G10 
---------------------------- 

0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 

0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 0 0 0 0 
4 0 0 0 0 0 0 0 0 0 0 
5 0 0 0 0 0 0 0 0 0 0 
6 0 0 0 0 0 0 0 0 0 0 
7 0 0 0 0 0 0 0 0 0 0 
8 22.90 0 0 0 0 22.90 0 0 0 0 
9 45.84 0 0 0 16.14 45.84 0 0 0 16.14 
10 80.00 0 50.00 0 46.14 80.00 0 50.00 0 46.14 
11 62.16 0 25.65 0 16.14 62.16 0 25.65 0 16.14 
12 39.60 0 25.66 0 0 39.60 0 25.66 0 0 
13 30.02 0 0 0 0 30.02 0 0 0 0 
14 0 0 0 0 0 0 0 0 0 0 
15 0 0 0 0 0 0 0 0 0 0 
16 0 0 0 0 0 0 0 0 0 0 
17 0 0 0 0 0 0 0 0 0 0 
18 0 0 0 0 0 0 0 0 0 0 
19 0 45.21 0 0 0 0 45.21 0 0 0 
20 0 0 0 0 0 0 0 0 0 0 
21 0 0 0 0 0 0 0 0 0 0 
22 0 0 0 0 0 0 0 0 0 0 
23 0 0 0 0 0 0 0 0 0 0 

 

Table 3 shows the optimal scheduling results at 
risk constraint of 0 and 0.1. As shown in Table 3, 
system needs to turn on more generations to provide 
more spinning reserve at the risk constraint of 0 
compare with the one of 0.1, which makes the operation 
safer but more expensive. This explains why system 
cost would decrease with the increase of risk 
constraints.  

Figure 4 also demonstrates a trend that coal 
consumptions would decrease as risk constraint grows 

while the sensitivities between them would become 
lower. In order to prove the point, this study carries 
simulations with series of wind penetrations.  

Figure 6 and 7 show the coal consumptions under 
different wind penetrations and risk constraints. Curves 
in Fig. 6 illustrate the relations of coal consumption and 
risk constraint with wind penetrations of 0, 50, 150, 
300, 450 and 600 MW, respectively, while the ones in 
Fig. 7 depict the connection of coal consumption and 
wind penetrations under different risk constraints, 
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which are 0, 0.005, 0.01, 0.015, 0.02, 0.04, 0.06 and 
0.1, respectively.  

As shown in Fig. 6, wind penetration would not 

affect the above trend, but it has effect on the slopes of 

curves, which are the benefit of enlarging unit risk 

constraint. From the variation of those slopes, unit risk 

benefit would increase with wind penetration but 

decrease with of risk constraint. Distances of adjacent 

curves in Fig. 7, which stands for the risk benefits of 

enlarging risk constraint from one to another, could also 

prove the above characteristic for those distances 

become smaller and smaller as increasing of risk 

constraint and decreasing of wind penetration.  

Figure 7 also shows that coal consumptions 

decrease with wind penetration at most time and the 

only exception happens with risk constraint of 0. 

Consumption in the above condition is larger than the 

one with 450 MW, which can also be seen in Fig. 6. 

The exception shows the increase of wind penetration 

might make a rise of system cost when the risk 

constraint is small and wind penetration is large. Cost 

of system including 600 MW wind generation would be 

lower than the one including 450 MW while risk 

constraint increases up to 0.005 or larger, which 

supports the point that unit risk benefit would increase 

with installed capacity of wind generation.  

Slopes of those curves in Fig. 7 stand for the saved 

consumptions per million watts installed capacity of 

wind penetration. From the variation of slopes in the 

figure, the contribution of unit wind generation has a 

general trend to decrease with the increase of wind 

penetration and the decline of risk level. 

 

NOMENCLATURE 

 

f [P]  Coal consumption of thermal 

generation at power P 

Si  Startup consumption of thermal 

generation i 

Ui  State of thermal generation i, value 1 

and 0 stand for running and shutting 

down, respectively 
TP , 

wP   Power of thermal generation and wind 

farm 

P
T
max,j,P

T
min,j  Maximum and minimum outputs of 

thermal generation j 

URi , DRi      The up and down ramp rate of thermal 

generation i 

Ng , Nw         Numbers of thermal generators and 

wind farm 
up

reserveP , down

reserveP  Reserve capacity of power system 

{ }Pr A           Probability of event A 

P∆ ,
w
P∆    System and wind power variation 

caused by forecasting error 

minEv∆ , maxEv∆  Minimum and maximum forecasting 

error of wind speed 

min max,EL EL∆ ∆  Minimum and maximum forecasting 

error of load 

jv%, f
v          Real and forecasting value of wind 

speed 

Ev∆ , EL∆     Forecasting error of wind speed and 

load 

civ ,
cov         Cut in and cut out wind speeds of wind 

generator 

rv , w

rP        The rated wind speed and rated power 

of wind farm 

speedp ,
load

p    The real probabilistic density of 

sampled wind speed and load 

'speedp , '
load

p  The changed probabilistic density of 

sampled wind speed and load which 

are used in the UPS 

Te, T，Rcool  Temperature, initial temperature and 

cooling rate of SA 

Nr , Nr′        Result of every sampling in UPS and 

the restored one 

,i tP        Coding of GA stands for the output of 

thermal generator i at time t 

PL (t) PW (t)   Load and total outputs of wind farms 

at time t 

,Prsv k
      Selection probability of individual k in 

SAGA 

kf ,
minf      Fitness value of individual k and the 

best one in each generation 

P_Risk     Risk penalty term 

R, 
initial

R     Penalty coefficient and its initial value 

WGP         Rated power of wind generation 

 

CONCLUSION 
 

With the development of smart grid, more and 
more wind power will penetrate into the grid, which 
brings challenges to both short-term and real-time ED 
problem. This study carries researches on short-term 
ED of power system with wind power penetration, 
proposes a short-term ED model considering risk 
constraint and adopts SAGA to optimize system cost. 
The proposed model solves the challenge of wind 
penetration by offering a risk control method. With the 
method, system could utilize the wind energy as 
possible as it could under the setting risk level. The ED 
model utilizes the probability of lacking reserves as the 
measurement of system risk and evaluates it by the 
UPSMC method. As shown in simulation results, the 
UPSMC could reduce sampling times to 20~30% 
compare with the traditional one for the utilized 
probability distributions. Meanwhile, the SAGA 
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method shows better performance than general GA. 
Coal consumptions would decrease with risk constraint, 
but the unit risk benefit would decrease with it and the 
reduction of wind penetration. Therefore, enlarging the 
same risk constraint would always more cost-effective 
while the risk constraint is small or the wind 
penetration is large. In the other hand, system cost 
would decrease with wind penetration at most situations 
and the exceptions, which stand for the system cost 
have a rise with wind penetration, only happens when 
the risk constraint is too small for a large wind 
penetration. Contribution of unit wind generation 
becomes smaller with the increase of wind penetration 
and the decline of risk level, which means wind 
generations would be more efficiency when the 
penetration is small or the risk constraint is large. 
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