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Abstract: The observing capability of the Active Disturbance Rejection Control (ADRC) for the general systems is 
discussed in this study. The frequency performance of the Linear Extended State Observer (LESO) is analyzed. And 
the theoretical result is verified by simulations. It is shown that ESO can estimate the required states at the designed 
speed, in spite of the different total uncertainties. 
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INTRODUCTION 

 
Control design for the systems with uncertainties is 

a longstanding fundamental issue in automatic control. 
The uncertainties usually stem from 2 sources: the 
internal (parameter or structure) uncertainty and the 
external (disturbance) uncertainty. Hence, many 
disturbance estimating techniques appeared, such as 
Unknown Input Observer (UIO) (Basile and Marro, 
1969), Perturbation Observer (POB) (Kwon and Chung, 
2003), the Disturbance Observer (DOB) (Schrijver and 
Dijk, 2002). And the Active Disturbance Rejection 
Control (ADRC), which is based on the use of 
Extended State Observer (ESO), attracted many 
researchers’ attention due to less dependence on the 
model information, strong capabilities for disturbance 
rejection and its simple control structure. The key of 
ADRC is to use ESO to estimate the total uncertainty, 
which lumps the internal nonlinear and uncertain 
dynamics and the external disturbance. Then the 
uncertainties of the system can be compensated 
actively. 

The idea of ESO can be demonstrated in the 
following Single-Input and Single-Output (SISO) 
model:  
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where,  
n : The order of the plant model  
y : The output, u is the input  
b : A constant 
w(t) : The external disturbance  

f(.) : The total uncertainty (or total disturbance) of the 
system, containing both internal and external 
uncertainties  

 
Introduce e(t) =  df/dt . Then the total uncertainty f(.) 
can be taken as an extended state of the system (1) and 
the Eq. (1) can be written in the state form as: 
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where, ܺ ൌ ሾݔଵ … . ௡ାଵሿ்ݔ א ܴ௡ାଵ  is the state vector of 
the system. The general form of ESO estimating both 
the states and the extended state for the uncertain 
system (1) is given in Gao et al. (2001) and Han (1995). 
As a special form of ESO, the following Linear ESO 
(LESO)  is  discussed  in many studies, such as Zheng 
et al. (2007a, b):  
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where,  
ܼ ൌ ሾݖଵ,…ݖ௡ାଵሿ் א ܴ௡ାଵ  is the state vector of ESO 
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,௜ߚ ሺ݅ ൌ 1,2, … ݊ ൅ 1ሻ are the observer gains  
And ESO (3) is designed to have the property that: 
 

( ) ( ) 1 2 ... 1i iz t x t i n→ , = , , + .  
 
In Yang and Huang (2009), the capability of LESO 

(3) is analyzed for a wider scope of uncertain function f  
(t). It is shown that LESO can estimate the total 
uncertainty with bounded error if either the derivative 
of the total uncertainty is bounded or the total 
uncertainty itself is bounded. If the plant model is 
unknown, it will be difficult to discuss the error bound 
of ESO generally, since the total uncertainty may 
involve the high order derivatives of the system output. 
Sometimes, the orders of involved derivatives are even 
higher than the plant order. In this study, the capability 
of LESO is analyzed in frequency domain for the plants 
with unknown model. The main result is that the LESO 
can track the derivatives of the system output and the 
total uncertainty at the designed speed, while the 
stability of ESO is guaranteed.  

In this study, the capabilities of ESO for estimating 
uncertainties are analyzed. The main result implies that 
ESO (6) can be used to observe the required states and 
the total uncertainty while the stability of ESO (6) is 
guaranteed. Moreover, the theoretical results are 
verified in detail by the simulations. 

 
PROBLEM FORMULATION 

 
In the following discussion, a symbol may 

represent both a time-domain variable and its Laplace 
transform when there is no confusion. 
Consider the following general system:  
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                                                  (4)
 

 
where, ݔԦ,  and u  represent the state vector, the output  ݕ
and the control input, respectively. 

The design objective is to build an LESO (6) which 
can estimate the 1st to (n-1)th order derivatives of y and 
the total uncertainty, guarantee y(t)  to be controlled to 
follow the command signal v(t). And assume that the 
1st to (n-1)th order derivatives of  v(t)  can be obtained 
in real time.  

Due to the lack of the plant knowledge, the plant 
(4) may be modeled by the following dynamic system 
while designing the ADRC scheme:  
 

( ) ( )n
ey f b u= ⋅ + ,                                           (5) 

 
where,  

1n ≥  : An estimate of the order of the plant (4)  

be : An estimate of the gain for the control input  
f(.) : The  total  uncertainty, which  contains  all  the 

unknown  dynamics: If n is greater than the plant 
order, f(.) will involve the derivative(s) of 
order(s) higher  than  the  plant order  

 
Remark 1: Since the gain for the control input of the 
system (4) may be unknown or even varying, be is 
different from b in (1) and (3). If the plant (4) is a linear 
system, be is an estimate of the plant’s NZC, which is 
short for the numerator’s zero-order coefficient (Zhao 
and Huang, 2011; Zhao, 2011). 

The key in ADRC is to design the Extended State 
Observer (ESO) to estimate the total uncertainty f(.) 
Based on (5), the LESO (3) is modified as follows:  
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where,  ߚ௜ ሺ1 ൑ ݅ ൑ ݊ ൅ 1ሻ are positive parameters. 
And   ߚ௜ ሺ1 ൑ ݅ ൑ ݊ ൅ 1ሻ  should be designed such that 
௜ ሺ1ݖ ൑ ݅ ൑ ݊ሻ  tracks ݕ௜ିଵሺ1 ൑ ݅ ൑ ݊ሻ   and zn+1 tracks 
f(.). Then the following control law is proposed for the 
tracking problem:  
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where, the parameters ݌௜ ൐ 0  for 1 ൑ ݅ ൑ ݊, v(0) = v  is 
the reference signal and ݒሺ௜ሻሺ1 ൑ ݅ ൑ ݊ሻ represents the 
ith order derivative of v. 
Based on (6), there is: 
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Then the 2 properties follows: 
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Lemma 1: If ܨ௬௜ሺݏሻሺ1 ൑ ݊ ൑ ݊ ൅ 1ሻ
 
is stable, then its 

zero-frequency gain is Fyi(0) = 1.  
 
Lemma 2: If ܨ௨௜ሺݏሻሺ1 ൑ ݊ ൑ ݊ሻ is stable, then its zero-
frequency gain is Fui(0) = 0. 
 

MAIN RESULTS 
 
Theorem 1: There exist such parameters be, 
,ଵߚ ,ଶߚ … ,௡ାଵ and ଵܲߚ ଶܲ, … ௡ܲ  for the ESO (6) that 
,ሻݏ௬ଵሺܨ ,ሻݏ௬ଶሺܨ …  ሻ andݏ௬௡ାଵ ሺܨ
,ሻݏ௨ଵሺܨ ,ሻݏ௨ଶሺܨ …  ሻ are all stable transfer functionsݏ௨௡ሺܨ
and:   
 

( ) 1 0 (1 1)
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for any fixed ݓ௘ ൐ 0   and ߝ௘ ൏ 0.  

Before the proof of Theorem1, the following 
lemma shown in Zhao (2010) will be introduced:  
 
Lemma 3: Assume p(s) and Q(s) be monic polynomials 
with real coefficients, p(s) be Hurwitz, degP(s) = m and 
degQ(s)൑ ݉ ൅ 1. Then there exists some positive k0 
such that kP(s) + Q(s) is Hurwitz for any ݇ ൐ ݇଴. 
 
Proof of theorem 1: Since ܨ௬ଵሺݏሻ, ,ሻݏ௬ଶሺܨ …   ሻݏ௬௡ାଵ ሺܨ
and ܨ௨ଵሺݏሻ, ,ሻݏ௨ଶሺܨ … ሻݏ௨௡ ሺܨ

 
 all have the same 

denominator, their stability is equivalent to that: 
  

11( ) 0
n knB s kk sβ + −+

=∑                                       (11) 

 
is Hurwitz. Assume  ߙ௜ = ߚ௜/ߚ௜ିଵ,1 ൑ ݅ ൑ ݊ ൅ 1  and 
Dn+1(s) = 1 Then define ܦ௜ ൌ ௡ାଵି௜ݏ  ൅  ௜ାଵ forܦ௜ାଵߙ
݊ ൒ ݅ ൒ 0  Thus Do(s) = B(s). 

The  following  induction  is made to show that 
B(s) = Do(s)  is   Hurwitz. First, considering ߙ௡ାଵ ൐ 0 , Dn(s) = s+ߙ௡ାଵ  is  Hurwitz   immediately.   Then,   
Di(s) = sn+1-i+ߙ௜ାଵܦ௜ାଵ ሺݏሻ is Hurwitz from Lemma 3, 
provided that  Di+1(s)  is Hurwitz and ߙ௡ is big enough. 
Thus, the induction is completed and the stability is 
proved. 

Furthermore, (10) will be achieved by modifying 
the former induction. Assume ߝ௘ ൏ 1 and ݓ௘ ൐ 1  without loss of generality. Let  ߝ଴ א ሺ0,1ሻ be small 
enough such that:  
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holds for 1൑ ݅ ൑ ݊ ൅ 1. Especially, when ݅ ൌ ݊ ൅ 1, 
there is: 
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Then, for  1൑ ݅ ൑ ݊ ൅ 1.  And  ߱ א ሾ0, ܹሿ , there is: 
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Moreover, for  1 ൑ ݅ ൑ ݊ 
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Hence (10) holds for any ߱ א ሾ0, ܹሿ.  

 According  to  Theorem1, each ܨ௬௜ሺݏሻሺ1 ൑ ݅ ൑
݊ ൅ 1ሻ is a low-pass transfer function with bandwidth 
no lower than we and zero-frequency gain 1. 
Meanwhile, ܨ௨௜ሺ1 ൑ ݅ ൑ ݊ሻ    is a band-stop transfer 
function with stop band wider than [0 ]eW,  and 
satisfying  ܨ௨௜ሺ0ሻ ൌ 0 and lim ( ) 0uiF jω ω→∞ | |= . 
Hence, taking U as disturbance, ESO (6) can be used 
for the uncertain minimum-phase system ( )H s  to 
observe the required states. Moreover, ESO (6) plus the 
controller (7) can guarantee the close-loop stability. 
Then, the practical performances will be shown by 
simulation in next section.  

 
SIMULATIONS 

 
Consider the following group of plants: 
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Fig. 1: Close-loop performances with ADRC 
 

 
 
Fig. 2: Performances of ESO: y (t) and z1 
 

 
 
Fig. 3: Performances of ESO: y (t) and z2 
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Fig. 4: Performances of ESO: f (t) = y (t) - beu (t) and z3 
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The objective is to make their outputs track the 

reference 1( )v t  by designing a parameter-fixed ADRC. 
In detail, 1( )v t  satisfies the condition that 

1v  maintains 
to be 1 after a finite period of time and v2(t) = v1(t) is 
continuous and available. In this study, 1( )v t  is 
generated by the Tracking Differentiator (TD) in Huang 
and Zhang (2002). And the following ADRC scheme is 
designed for the nine plants:  
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3 1 1 1 2 2

1
2( ( ) ( ))eu b z p v z p v z−= − + − + − ,            (16) 

where, 
ଵߚ ൌ 200 
ଶߚ ൌ 2500  
ଷߚ ൌ 7000   
ܾ௘ ൌ 100  
ଵ݌ ൌ 300  
ଶ݌ ൌ 5 
 

The close-loop performances for the nine systems 
are shown in Fig. 1. The outputs all track v1(t) with no 
static  errors.  The  capability  of  ESO  is  shown in 
Fig. 2-4. Figure 2 shows that z1(t)  follow the output 
y(t) very quickly for all the nine plants. In Fig. 3, z2 
follows y(t)  in all cases. According to Section 2, z3 is 
designed to follow the total uncertainty. Figure 4 
demonstrates that ESO (15) has a good capability to 
follow the total uncertainties, despite the uncertainties 
are quite different in the nine plants. With the help of 
ESO (15), all the uncertainties can be estimated and 
compensated by the controller (16). Hence the stable 
tracking can be achieved with good transient quality. 

 
CONCLUSION 

 
In this study, the capabilities of ESO for estimating 

uncertainties are analyzed. The main result implies that 
ESO (6) can be used to observe the required states and 
the total uncertainty while the stability of ESO (6) is 
guaranteed. Moreover, the theoretical results are 
verified in detail by the simulations. 
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