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Abstract: Errors appear when the Shannon sampling series is applied to reconstruct a signal in practice. In this 

paper, we study a general model that uses linear functional to cover several errors in one formula, and consider 

sampling series with measured sampled values for not band-limited signals but satisfying some decay condition. We 

obtain the uniform truncated error bound of Shannon series approximation for multivariate Besov class. The results 

show this kind of Shannon series can approximate a smooth signal well. 

 

Keywords: Besov class, local averages, measured sampled values, modulus of continuity, Shannon sampling 
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INTRODUCTION 

 

Since Shannon introduced the sampling series in 

the context of communication in the land-mark study 

(Shannon, 1948), the Shannon sampling series has 

become more and more important. By now, sampling 

theory has grown to an independent research area. The 

theorem states that a band-limited signal can be exactly 

recovered from its sample values. However errors 

appear when the Shannon is applied to approximate a 

signal in practice. Typical errors are jitter errors, 

amplitude errors, truncated error and aliasing error. 

Motived by Butzer and Lei (1998), we consider the 

sampled values which are the results of a linear 

functional and its integer translates acting on a 

undergoing signal (Burchard and Lei, 1995). Following 

(Casey and Walnut, 1994) we call such sampled values 

measured sampled values because they are closer to the 

true measurements taken from a signal. This model 

covers jitter errors, amplitude errors and the errors 

arising from sampled values obtained by averaging a 

signal (Boche, 2010). 

In this study we investigate the approximation 

sampling series with measured sampled values for not 

band-limited functions from Besov class and obtain the 

uniform bound of the truncation errors. Note that the 

strong "band-limited" assumption is the first time 

replaced by a weaker one, a smooth condition. 

Let's begin with some concepts. For 1 p≤ ≤ ∞ , let   

L
p
 (R

d
)be the space of all p-th power Lebesgue 

integrable functions on R
d
 equipped with the usual 

norm: 

1/

( ) , 1 ,
:

sup ( ) ,

d

d

p

p

p

t

f t dt p
f

ess f t p
∈

 
 ≤ <∞  =  
 =∞

∫
R

R

 

 

In the following, � ���  denotes vector 

1( , , )dt t t= L  with j
t ∈R  and 1( , , )dat at at= L  is the 

product of t  with the scalar a ∈ R , 1 1( , , )d dtk t k t k= L  

is the product of � , � � ��  . By [ ],t t−  we understand 

the d -dimensional rectangle given by all vectors 
dk∈R  with – tj ≤ kj ≤ tj  j = 1, …d.

 
 

Set { }max : 1, ,ik k i d= = L , k d∈R  

 

Let ( )p dBπ Ω R be the set of all bounded functions 

from ( )p dL R  which can be extended to entire 

functions of exponential type πΩ , In view of 

Schwartz's theorem, every function pf Bπ Ω∈  is band-

limited to [ ],π π− Ω Ω , i.e., 

 

[ ]{ }ˆ: ( ) : supp ,p p dB f L fπ π πΩ = ∈ ⊂ − Ω ΩR  

 

where, f̂  is the Fourier transform of f in the sense of 

distribution. In the special case p = 2 it reduces to the 
Paley-Wiener theorem (Nikolskii, 1975). 

The famous Whittaker-Shannon-Nyquist sampling 

theorem, or simply Shannon theorem, states every 
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signalfunction
2f BπΩ∈  can be completely reconstructed 

from its sampled values taken at instances / 2k Ω . In 

this case the representation of f  is given by:  

 

( ) ( )( ) : sin (2 )
2k

k
f t S f t f c t k

+∞

Ω
=−∞

 = = Ω − Ω 
∑

 
where, sin ( ) sin / ( )c t t tπ π=  and sin (0) 1c = .The 

Shannon theorem plays an important role in signal 

analysis as it provides the foundation for digital signal 

processing. It has been generalized to the case of non-

band-limited signals, irregular sampling, 

multidimensional, and stochastic signal and so on 

(Zayed, 1993). 

Shannon's expansion requires us to know the exact 

values of a signal f  at infinitely many points and to sum 

an infinite series. But in practical situations, only 

finitely many samples are available, so it is natural to 

use: 

 

,
( )( ) : sin (2 )

2

N

N

k N

k
S f t f c t k

+

Ω
=−

 = Ω − Ω 
∑  

 

to approximate ( )f t  and study the bounds on the 

truncation error, which is defined by: 

 

, ,( )( ) : ( ) ( )( )N NE f t f t S f tΩ Ω= −  

 

There were some papers concerned the estimate of 

truncation error (Zayed, 1993). 

We proceed to state our own generalization of 

Shannon Theorem. We consider multi-dimensional 

signal. To obtain our main results, we need the error 

modulus: 

 

( , ) : sup ( / ) ( / ) , 0kf f k f kω λ λΩ = ⋅ + Ω − Ω Ω >  

 

where, { }kλ λ=  is any sequence of continuous linear 

functional 0 ( )dC →R R  with 0 ( )dC R  being the 

Banach space consisting of all continuous functions 

defined on 
d

R  and tending to zero at infinity. The error 

modulus ( , )fω λΩ  provides a quantity for the quality 

of a signal's measured sampling values. When λ  is 

concrete, we may get some reasonable estimates for 

( , )fω λΩ . 

Our aim is to study the sampling series with the 

measured sampled values, namely: 

 

( )( ) : ( / ) sin ( )
d

k

k

S f t f k c t kλ λΩ
∈

= ⋅+ Ω Ω −∑
Z

 

 

and consider the finite sum: 

,

,

( )( ) : ( / ) sin ( )
d

N k

k k N

S f t f k c t kλ λΩ
∈ ≤

= ⋅ + Ω Ω −∑
Z

      (1) 

 

where, 
1

sin ( ) sin ( )
d

jj
c t c t

=
=∏  for all 

dt ∈R . In this 

way we can study the bounds of truncation error: 
 

, ,( )( ) : ( ) ( )( )N NE f t f t S f t
λ λ
Ω Ω= −                        (2) 

 
We organize the study as follows. In section two 

we derive the truncation error for band-limited 

functions from the class ( )p dBπΩ R . In section three we 

obtain truncation error for non-band-limited functions 

from Besov class 
,( ( ))r d

pB θ RA . In section four we 

provide some applications. 
 
Trunction error for band-limited functions from 

class �	

� (
�): In this section we derive the truncation 

error for band-limited functions from the class ( )p dBπΩ R

.For a real number x , let [ ]x  denote the largest integer 

less than or equal to x . In what follows, we often use 

the same symbol C  for possibly different positive 

constants. These constants are independent of N, Ω and 

σ. Let  �

� �
�� ≔  �


� (
�), if  
 = (
, … , 
). 

The main result of this section is the following theorem. 
 

Theorem 1: Let 1 p≤ < ∞ , ( )p df BπΩ∈ R  and satisfy 

the decay condition inequality 
 

  ( ) /f t A t
δ

≤ , 0t ≠                                      (3) 

 
where, A > 0 is a constant. Then for 

( 1)/ 1/

0 [ ( , ) ]de N N fδ δω λ+ −
Ω≤ ≤ = Ω  

 
we have: 
 

,( )( ) ln ,d

NE f t C N
N

δ
λ
Ω

Ω ≤ ⋅ ⋅ 
 

 

 

And for 0N N>  

,

1
( )( ) ( , ) ln

( , )

d

N
E f t C f

f

λ ω λ
ω λΩ Ω
Ω

 
≤ ⋅ ⋅ 

 
 

 
To prove Theorem 1 we need some auxiliary 

assertions. 
 

Lemma 1: Let ( )p df BπΩ∈ R , 1 p< < ∞ : Then: 

 

( ) ( )( ) sin ( )
dk

k
f t S f t f c t kΩ

∈

 = = Ω − Ω 
∑
Z
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where, the series on the right-hand side converges 

uniformly on 
d

R . 
 

Lemma 2: For 
dt ∈R , q<1  and Ω >0, we have: 

1/

sin ( )
1d

q d

q

k

q
c t k

q∈

   
Ω − ≤     −  

∑
Z

 

 

Lemma 3: Let 00 ,p p< < ∞ , ( )p df BπΩ∈ R . Then we 

have: 
 

( ) ( ) sin ( )
d

k

k

f t f c t kλ
∈

− Ω −∑
Z

 

 

≤
0

0
1/

0( )

p
p

d

k

k N

k
f f pλ

≤

   −  Ω  
∑  

 
0

0
1/

0

p
p

d

k N

k
f p

>

   +   Ω  
∑  

 

where, 0 01/ 1/ 1p q+ = . 

 

Proof of Theorem 1: Let's consider the case 0N N≤
first. For  1 p≤ ≤ ∞  set: 

 

{ }: : ( ), ( ) / , 0, 0p p dF f f B f t A t t
δ

π π δΩ Ω= ∈ ≤ ≠ >R
 

 

For a given class 
pFπΩ , we show that there exists a 

* (1, )p ∈ ∞  such that
*p pF Bπ πΩ Ω⊂ . Actually when 

1 p< < ∞ , we simply take  

*p p= . If 
1f F Fπ π

∞
Ω Ω∈ U , then f  is measurable. 

Let p*>max{1, 1/δ}, applying the decay condition of 

f  itis easy to prove that 
*( )p df L∈ R . Thus

*pf BπΩ∈ . 

Observe that 
pf FπΩ∈  implies ( )d

of C∈ R . According 

to Lemma 1 and Lemma 3, we have: 
 

( ) ( )( / ) sin ( )k

k N

f t f k c t kλ
≤

− ⋅+ Ω Ω −∑  

 

≤

0
0

1/

0( )

p
p

d

k

k N

k
f f pλ

≤

   −  Ω  
∑  

 

0
0

1/

0

p
p

d

k N

k
f p

>

   +   Ω  
∑  

where, 0 01/ 1/ 1p q+ = . We first derive the following 

estimate of the first term of right hand-side by the 

definition of ( , )fω λΩ : 

0
0

1/

0( )

p
p

d

k

k N

k
f f pλ

≤

   − ≤  Ω  
∑  

 

0/

0(2 1) ( , )
d p dC N f pω λΩ+                                   (4) 

 

Let f  satisfy the decay condition (3), then for 

0 lnp N= ≥ max{( 1) / ,1}d δ+  we have: 

 
0 00 0

1/ 1/p pp p

k N k N

k k
f A

δ−

> >

        ≤       Ω Ω     
∑ ∑  

0

0

0

/
1/1

1/

0

(2 3 )
( )

d p
pd

p

N
d

p d

δ
δ

δ

−
−≤ Ω

−
                     (5) 

 

where, in the last inequality we use the inequality from. 

The assumption 0 ln ( 1) /p N d δ= ≥ + implies 

0 1p dδ − ≥  and 0/d p dN e≤ . Then combining (4) and 

(5) we get: 

 

,( )( ) ( , ) (ln ) lnd d

NE f t C f N C N
N N

δ δ
λ ω λΩ Ω

 Ω Ω   ≤ + ≤ ⋅ ⋅         
 

 

Now we take 0N N> , similarly we have: 

 

, 0

0

1
( )( ) (ln ) ( , ) ln

( , )

d

d

N
E f t C N C f

N f

δ

λ ω λ
ω λΩ Ω
Ω

   Ω
≤ ≤   

  
 

 

Thus the proof of Theorem 1 is complete. 

 

TRUNCTION ERROR FOR NOT BAND 

LIMITED FUNCTIONS FROM BESOV CLASSES 

 

Since the functions encountered in applications of 

the sampling theory are not always exactly band-

limited. Finding a bound for the error when a non-band-

limited function is approximated by the sampling 

expansion is a very practical issue. In this paper we 

study this problem in a considerable generality, that is, 

we assume that the signal functions belong to Besov 

class which is very commonly used in many 

applications. 

Let's recall the definition of Besov space. Suppose 

that l N∈ , r +∈R . For any ( )p df L∈ R : 

 

( )

0

( ) ( 1) ( )
l

l l j

u

j

l
f t f t ju

j

+

=

 
∆ = − + 

 
∑
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is the l -th difference of the function f  with step u  

and [ ] 1l r= + . We say 
, ( )r d

pf B θ∈ R , 1 ,p θ≤ ≤∞  if

( )p df L∈ R   and the following semi-norm is finite: 

 

,

1/

( )

0

( )
, 1 ,

:

( )
sup , .

d

r d
p

l

u p

d

r

B

l

u p

r
u

f du

u u
f

f

u

θ

θθ

θ

θ
≠

  ∆ ⋅   ≤ < ∞       = 
 ∆ ⋅ = ∞


∫
R

R

 

 

The linear space 
, ( )r d

pB θ R  is the Banach space 

with the norm: 

 

, ,( ) ( )
:r d r d

p pB p B
f f f

θ θ
= +

R R
 

 

We assume /r d p> , by the embedding theorem 

cf., functions from 
, ( )r d

pB θ R  are continuous, and 

therefore function values are well-defined. Let 

,( ( ))r d

pB θ RA  be the unit ball of the space 
, ( )r d

pB θ R . 

In this section we will develop uniform estimates for 

,( )( )NE f tλ
Ω when 

,( ( ))r d

pf B θ∈ RA .Our result is the 

following theorem. 

 

Theorem 2: let 
,( ( ))r d

pB θ∈ Rf A , 1 , ,p θ≤ ≤ ∞  

/r d p> , satisfying the inequality (3) and 

( 1)/( ( / ))d r d pe δ+ + −Ω ≥ .  Then: 

 
/

,
( )( ) (ln )r d p d

N
E f t Cλ − +
Ω ≤ ⋅Ω Ω  

 

provided 
1 ( / )/: r d pN δ+ −= Ω  and 

/r d pω − +
Ω ≤ Ω  

To prove Theorem 2 we will choose an inter-

mediate function which is a good approximation for 

both f  and S fΩ . Now we begin with a description of 

how to choose this function. For any positive real 

number v  we define the function: 

 
2( ) (sin ) s

v sg x A cvxπ = ( , 2 1)x s∈ >R  

 

where, the constant sA is taken such that ( ) 1vg x dxπ =∫
R

 

Let 1( , , ) 0dΩ = Ω Ω >L . For 
, ( )r d

pf B θ∈ R , set 

1
( )( ) : ( )(( 1) ( ) ( ))i i

i i i

k ks

i t iT f t g x f t f t dxπ π
+

Ω Ω= − ∆ +∫
R

 

We introduce the operator 
1 , , :

n

s
Tπ πΩ ΩL  

, ( ) ( )r d p d

pB Lθ →R R  by: 

1 1, , 1 1 1 1( )( ): ( ) ( ) ( , , , , , )
n n

n

s

n n n n dT f t G u G u f t u t u t t duπ π π πΩ Ω Ω Ω += + +∫L
L L L

R  
 

where,
1

( ) ( / ) ( / )
i

i i

k

i j ij
G t d j g t jπ πΩ Ω=

=∑ , 1 n d≤ ≤ . It 

is known from Nikolskii (1975) that 
2 ( )s d

sT f Bπ πΩ Ω∈ R . 

So if 2 1s ≥ , then ( )s dT f Bπ πΩ Ω∈ R . The family of 

linear operator sTπΩ  plays an important role in the 

representation and approximation of functions from 

Besov space. 

 

Lemma 4: Let 
,( ( ))r d

pf B θ∈ RA , 1 , ,p θ≤ ≤ ∞   

/r d p> , then for any 
dt ∈R

:
 

/
( ) ( )( )

s r d p
f t T f t Cπ

− +
Ω− ≤ ⋅Ω  

 

Lemma 5: Suppose 
,( ( ))r d

pf B θ∈ RA  satisfy the 

inequality (3) and  1,2s d δΩ ≥ > +  then there exists a 

constant ' 0A >  such that: 

 

( )( ) 'sT f t A t
δ

π
−

Ω ≤  

 

Next we should discuss the convergence of  

( )( )S f tΩ  when f  is not band-limited. We begin with 

the introduction of 
,p dl space. For 1 p< < ∞ , let 

, : ( )p d d

pl l= Z  be the Banach space of all double infinite 

bounded sequences { }ky y=  with the usual norm: 

 
1/

:
d

p

p

kp
k

y y
∈

 
=   
 
∑
Z

 

 

Lemma 6: Let { } ,p d

ky y l= ∈ ,1 p< < ∞ ,then the 

series sin ( )
d

k

k

y c t k
∈

Ω −∑
Z

converges uniformly on 
d

R  

to a function in  ( )p dBπΩ R . 

 

Theorem 3: Let 
,( ( ))r d

pf B θ∈ RA , 1 , ,p θ≤ ≤ ∞   

/r d p> , satisfying the inequality (3) and 

( 1)/( ( / ))d r d pe δ+ + −Ω≥ , then for any
dt ∈R

:
 

 
/( ) ( )( ) lnr d p df t S f t C − +

Ω− ≤ ⋅Ω Ω  

 

Proof: It’s known from (5) that the decay condition of 

f  implies 0 ,p dk
f l
   ∈  Ω  

, where, { }0
max ( 1) / ,1p d δ≥ + . 

Thus by Lemma 6 ( )( )S f tΩ  converges uniformly on

d
R . The proof of Theorem 3 relies on the inequality: 
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( ) ( ) ( ) ( )( ) ( )( ) ( )( )
s s

f t S f t f t T f t T f t S f tπ πΩ Ω Ω Ω− ≤ − + −    (6)                                                                     

 
As was mentioned above that under the assumption 

2 1s δ> + , 
s pT f Bπ πΩ Ω∈ . This fact, together with (3) 

imply 
s pT f Fπ πΩ Ω∈ . Therefore we have ( )s s

T f S T fπ πΩ Ω Ω=  

and �(���
� ) ���  − (���)  ���� = ∑   ((���

� )�� !  "�
�# −

�(�
�))  $%&'  (Ω� − �) 

 
By Lemma 3 we have: 
 

1 2 3 0( )( ) ( )( ) ( )
s d

T f t S f t I I I pπΩ Ω− = + +  

 
where, 

0

0

1/

1
| ( / ) ( / ) |

p

ps

k N

I T f k f kπΩ
≤

 
= Ω − Ω  
 
∑  

 
0

0

1/

2
( )( / )

p

p
s

k N

I T f kπΩ
>

 
= Ω  
 
∑  

 

0

0

1/

3
( / )

p

p

k N

I f k
>

 
= Ω  
 
∑  

 

Lemma 4 yields that 
/

1

r d pI C − +≤ ⋅Ω  and the 

estimate of 2 3I I+  as we did in the proof of Theorem 1. 

In summary, we have obtained: 
 

/( )( ) ( )( ) lns r d p dT f t S f t C N
N

δ

π
− +

Ω Ω

 Ω − ≤ ⋅ Ω +     
 

 

and set 
1 ( / )/r d pN δ+ −= Ω , we yield: 

 
/( )( ) ( )( ) lns r d p dT f t S f t Cπ

− +
Ω Ω− ≤ ⋅Ω Ω                   (7) 

 
Thus combining Lemma 4, 6 and (7) we yield the 

desired result. 
 
Proof of Theorem 2: We will use the triangle 
inequality: 
 

, ,( )( ) ( ) ( )( ) (( )( ) ( )( )N NE f t f t S f t S f t S f tλ λ
Ω Ω Ω Ω≤ − + −   (8) 

 
And, 
 

1 2 0
( )( ) ( )sin ( ) ( ) d

k

k N

S f t f c t k I I pλΩ
≤

− Ω − ≤ + ⋅∑  

 
where, 

0

0

1/

1
| ( / ) ( )( / ) |

p

p

k

k N

I f k f kλ
≤

 
= Ω − ⋅+ Ω  
 
∑  

 

0

0

1/

2
( / )

p

p

k N

I f k
>

 
= Ω  
 
∑  

 

0p  and 0q  are exponent conjugates, i.e.,  

0 01/ 1/ 1p q+ = . Note that the embedding condition 

and the decay condition of f implies 0 ( )dC R . Therefore 

using the same arguments as in the proof of Theorem 1 

we obtain the same error estimates for: 

 

( 1)/

, 0(( )( ) ( )( ) ln ,d d

NS f t S f t C N e N N
N

δ
λ δ+

Ω Ω

Ω − ≤ ⋅ ⋅ ≤ ≤ 
 

     (9)       

 

and 

 

, 0

1
(( )( ) ( )( ) ( , ) ln ,

( , )

d

N
S f t S f t C f N N

f

λ ω λ
ω λΩ Ω Ω
Ω

 
− ≤ ⋅ ⋅ > 

 
     

For 

/
1

r d p

N δ
−

+
= Ω and 

/( , ) r d pfω λ − +
Ω ≤ Ω  we know 

0N N≤  and 
( 1)/( ( / ))d r d pe δ+ + −Ω ≥  implies 

( 1)/de Nδ+ ≤ .  

Therefore the conclusion of theorem 2 follows directly 

from Nikolskii (1975) and Theorem 3. 

 

Some applications: In this section we apply Theorem 1 

to some practical examples, which will be summarized 

in the following corollarys. The first one is that the 

measured sampled values are given by local average. 

Observe that the equation (1) requires values of a signal 

f that are measured on a discrete set. However, due to 

the physical limitation, say the inertia, a measuring 

apparatus may not be able to obtain the exact values of 

f at epoch tk = �/Ω. In practice only local averages of 

the signal near the sampling point can be measured. In 

1992, Gröchenig K. used a sequence of weight 

functions to average the original signal locally near the 

sampling point, and later, Aldroubi A., Butzer. P.L and 

Lei J., Sun W and Zhou X. obtained a lot of interesting 

results on the local average sampling. Specifically, let λ 

= {λk}be a sequence of continuous linear functionals. 

The sampled values are given by the local averages of a 

function may be formulated by the following integral 

representation: 

 

( ) : , ( ) ( )k k kf f u f v u v dvλ = = ∫                     (10) 

 

where, ku  for each k∈Z  is a weight function 

characterizing the inertia of measuring apparatus. 
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Particularly, in the ideal case, the function ku  is given 

by Dirac δ -function, ( )k ku tδ= ⋅+ , then: 

 

( ) : , ( )
k k k

f f u f tλ = =  

 

is the exact value of kt  Gröchenig first studied the 

reconstruction of signal from local averages in 1992. 

After that some authors studied the approximation error 

when local averages are used as sampled values. Now 

we assume that the functionals kλ  are given by (10) in 

terms of the weight functions ku  and ku  satisfy the 

following properties: 

 

).i   ' ''supp , ,
k k k

k k
u σ σ ⊂ − − Ω Ω 

 where 
'

4
k

σ
σ≤    

''

kσ ≤  
2

σ
, σ  is a positive constant: 

 

).ii ( ) 0ku t ≥ , ( ) 1ku t d t =∫                                       (11) 

 

).iii inf{ }k
k

α α
∈

=
Z

, where, 
/ / 4

/ / 4
: ( )

k

k k
k

u t d t
σ

σ
α

Ω+

Ω−
= ∫  

 

Note that now: 

 
''

'

/

/
( ) ( ) ( )

k

k

k

k k
k

f u t f t d t
σ

σ
λ

Ω+

Ω−
= ∫  

 

To estimate 
,( )( )NE f tλ

Ω , we need the concept of 

the modulus of continuity. For 0 ( )df C∈ R , we define 

the modulus of continuity by: 

 

( , ) sup ( ) ( )
h

f f h f
σ

ω σ
∞

≤
= ⋅+ − ⋅  

 

where, σ   is any positive number. Note that the 

functions in 0 ( )dC R  are uniformly continuous on 
d

R . 

Therefore we have 0lim ( , ) 0fσ ω σ→ = . 

 

Corollary 1: Let 
( 1)/( ( / ))d r d pe δ+ + −Ω≥ ， 1/σ < Ω  and 

,( ( ))
r d

pf B θ∈ RA  satisfying (3). Suppose ( )
k

fλ  is obtained 

by the rule (11). If { }/
( , / 4) min , / (2 )

d r d p
f eω σ α− − +≤ Ω − . Then: 

 

1
( ) ( )sin ( ) ( , / 4) ln

( , / 4)

d

k

k N

f f c k C f
f

λ ω σ
ω σ≤

 
⋅ − Ω⋅− ≤ ⋅  

 
∑

 
 

where, C  is a constant. 

 

Proof: Note that: 

''

'

/

/
( ) ( ) ( )

k

k

k

k k
k

f u t f t d t
σ

σ
λ

Ω+

Ω−
= ∫  

 

and 
''

'

/

/
( / ) ( ) ( / )

k

k

k

k
k

f k u t f k d t
σ

σ

Ω+

Ω−
Ω = Ω∫  

Then we have: 
 

''

'

/

/
( / ) ( ) ( )

k

k

k

k
k

f k u t f t d t
σ

σ

Ω+

Ω−
Ω − ∫  

 
''

'

/ /4 / /4 /

/ / /4 / /4
( )( ( / ) ( / ))

k

k

k k k

k
k k k

u t f k f t k dt
σ σ σ

σ σ σ

Ω− Ω+ Ω+

Ω− Ω− Ω+
= + + Ω − + Ω∫ ∫ ∫  

 
''

'

/4

/ 4
( / ) ( , / 2)

k

k
ku t k f d t

σ σ

σ σ
ω σ

−

 ≤ + + Ω 
 ∫ ∫  

 
/4

/4
( / ) ( , / 4)ku t k f d t

σ

σ
ω σ

−
+ + Ω∫

 
 

Because, ( , / 2) 2 ( , / 4)f fω σ ω σ≤ , so  

 

 ( , ) (2 ) ( , / 4)f fω λ α ω σΩ ≤ −  

  

We also note that the function ( )ln 1 /
d

x x x→  is 

monotonely increasing for (0, )dx e−∈  and we complete 

the proof. 
Next we consider the combination of all four 

errors. The four usual types of errors existing in 
sampling series are the amplitude error, the time-jitter 
error, the truncation errors and the aliasing errors. First 
we give some explanation for the amplitude error and 
the time-jitter error. 

We assume the amplitude error results from 

quantization, which means the functional value ( )f t  

of a function f at moment t  is replaced by the nearest 

discrete value or machine number ( )f t  The 

quantization size is often known before hand or can be 
chosen arbitrarily. We may assume that the local error 
at any moment t  is bounded by a constant 0ε > ,  i. 

e., | ( ) ( ) |f t f t ε− ≤ . 

The time-jitter error arises if the sampled instances 
are not met correctly but might differ from the exact 

ones by kσ ,  We assume kσ σ≤  for all k  and a 

constant σ . 

Let us now consider the combination of all four 
errors, namely the combined error: 

 

( ) : ( ) ( / ) sin ( )N k

k N

E f t f t f k c t kσ
≤

= − Ω + Ω −∑  

 

Corollary 2: Let 
,( ( ))r d

pf B θ∈ RA  satisfying (3). For 

( 1)/( ( / ))d r d pe δ+ + −Ω≥  we have: 
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/ lnr d p d

N
E f C − +≤ ⋅Ω Ω

 

provided 

/
1

r d p

N δ
−

+
= Ω , /

1| ( ) ( ) | r d pf t f t c − +− ≤ Ω and 

/

2( , ) r d pf cω σ − +≤ Ω  for some constants 1 0c >  and 

2 0c >  and for all 
dt ∈R  where 1 2 1c c+ ≤  is a 

constant. 
 
Proof: We define: 
 

( / )
( )

( / )

k

k k

k

f k

f k

σ
λ δ σ

σ
Ω+

= ⋅−
Ω +

 

 
where, δ  is the Dirac distribution and 0<|| σ 2|| ≤ σ. 

Then { }kλ λ=  is a sequence of linear functional on 

0 ( )dC R . It is clear that ( / ) ( / )k kf k f kλ σ⋅ + Ω = Ω +
and: 

 

( / ) ( / )k f k f kλ ⋅ + Ω − Ω  

( / ) ( / ) ( / ) ( / )k k kf k f k f k f kσ σ σ≤ Ω + − Ω+ + Ω+ − Ω

    
/

1 2( ) r d pc c − +≤ + Ω  

 

Thus 
/( , ) r d pfω λ − +

Ω ≤ Ω . The theorem follows 

from Theorem 2.1. 

 

CONCLUSION 
 

In this study we show that a function has a 
smoothness of order r>0 then the approximation order 

we can get is 
/ lnr d p d− +Ω Ω .  We also apply the results 

to some practical examples. Finally we would like to 
mention that we expect the sampling series to work 

better, i.e., without the factor lnd Ω  and it would be of 

great interest to generalize Theorem 3 to the case of the 

scalar 1
( .... ),

d i j
Ω = Ω Ω Ω ≠ Ω . 
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