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Equilibrium Assignment Model with Uncertainties in Traffic Demands 

 

Aiwu Kuang and Zhongxiang Huang 
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Changsha 410004, China 
 

Abstract: In this study, we present an equilibrium traffic assignment model considering uncertainties in traffic 
demands. The link and route travel time distributions are derived based on the assumption that OD traffic demand 
follows a log-normal distribution. We postulate that travelers can acquire the variability of route travel times from 
past experiences and factor such variability into their route choice considerations in the form of mean route travel 
time. Furthermore, all travelers want to minimize their mean route travel times. We formulate the assignment 
problem as a variational inequality, which can be solved by a route-based heuristic solution algorithm. Some 
numerical studies on a small test road network are carried out to validate the proposed model and algorithm, at the 
same time, some reasonable results are obtained. 
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INTRODUCTION 

 
Traffic assignment is an important issue of urban 

transport planning and has been widely studied by 
many scholars in the field of transportation, 
mathematics and physics, such as the user equilibrium 
principle proposed by Wardrop (1952) and the 
stochastic user equilibrium principle addressed by 
Daganzo and Sheffi (1977) are broadly used in 
transportation planning practices. However, in the past 
years, the studies on traffic assignment were mainly 
limited to deterministic road network, which is not 
sufficient for modeling an actual road network in real 
world. 

In contrast to deterministic network, the essential 
feature of a stochastic road network is that the link (or 
route) travel times are stochastic and travelers cannot 
ensure their actual travel times (Shao et al., 2006a). For 
transportation network analysis, the variability of travel 
times could arise from various uncertain factors, which 
can be divided into two categories, i.e., uncertainties in 
supplies and uncertainties in demands. Uncertainties 
due to variations in link capacities are caused from 
severe natural disasters to daily traffic incidents, such 
as earthquakes, floods, vehicle stall, road maintenance, 
traffic accident and so on. On the demand side, 
uncertainties in traffic demands are usually regarded as 
the traffic demand fluctuations. In general, the traffic 
demand between a given OD pair is an aggregate of the 
trip decisions of individual travelers and will vary 
between times of day, days of the week and seasons of 
the year. So far, there has been substantial development  

in the modeling of traveler’s route choice behavior in 
uncertain road network. Lo et al. formulated a travel 
time budget-based model to capture the presence of 
travel time variations due to degradable link capacities 
(Lo et al., 2006). Shao et al. (2006b) established a 
demand driven travel time reliability-based traffic 
assignment model, in which the traffic demands were 
described as normal distribution random variables. 
More recently, Siu and Lo (2008) developed a 
methodology to model doubly uncertain transportation 
network with stochastic link capacity degradation and 
stochastic demand. These existing studies greatly 
enriched the theory of uncertain road network 
equilibrium analysis, at the same time, they also 
indicated that the conventional traffic assignment model 
used in deterministic network can no longer applicable 
in a stochastic environment. In order to obtain more 
reasonable road network traffic assignment results, in 
this study, we propose a novel traffic assignment model 
from the point of view of the day-to-day demand 
fluctuations. Assume that the OD traffic demand 
follows a log-normal distribution, the mean and 
variance of route travel times are determined using the 
BPR (Bureau of Public Roads) type link impedance 
function in conjunction with the probability 
characteristics of log-normal distribution. And then a 
Variation Inequality (VI) formulation is proposed. A 
heuristic solution algorithm is developed and some 
numerical studies are carried out to demonstrate the 
applications of the proposed model and solution 
algorithm. 
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FORMULATION 
 

Route and link flow distributions: Consider a road 
network represented by a directed graph G (N, A), 
where, N is the set of nodes and A is the set of links. Let 
W be the set of OD pairs and Rw be the set of routes 
between OD pair w denoted the demand of OD pair w 
by Qw, which is treated as a random variable and 
assumed to follow a log-normal distribution. Let q

w
 be 

the mean and εw
 be the variance of OD pair w. Then: 
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where, µq
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 and σq

w
 are the mean and standard deviation 

(SD) of ln(Qw), which can be computed by: 
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Let σw
 be the SD of the traffic demand between 

OD pair w define the COV of demand as the ratio of the 

SD σw
 to the mean q

w
 as follows: 
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According to the studies in Shao, we also assume that: 
  

• The route flow follows the same type of probability 
distribution as OD demand. 

• The route flow COV is equal to that of OD 
demand. 

• The route flows are mutually independent.  
 
Then, the flow conservation equations can be expressed 
as: 
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where,  
Fk

w
 : The traffic flow on route k between OD pair w  

Xa : The flow on link a  
δa,k

w
 : The link-route incidence parameter whose value 

is one if link a is on route k and zero otherwise 
 
It is easy to see that Fk

w
 and Xa are random 

variables. Let fk
w
 and xa be the mean route flow and link 

flow, respectively. It follows from Eq. (4) that: 
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According to the assumption (a) and (b), the route 

flows also follow log-normal distributions: 
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where, µk,f
w
 and σk,f

w
 are the the mean and S.D. of ln 

(fk
w
), εk

w
 is the variance of the route flow. 

According to the route-link relationship in Eq. (4), 

the distribution parameters µa
x
 and σa

x
 of the random 

link flows can be approximated as follows: 
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where, εa
x
 is the variance of link flow Xa. Based on the 

assumption (c), εa
x
 can be calculated by: 
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Link and route travel time distributions: In this 
study, we also adopt the BPR link performance 
function, which defines the travel time, Ta, under flow 

Xa using two deterministic parameters α and β as: 
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where, ta

0
, ca are the deterministic free-flow travel time 

and capacity on link a, respectively. 
Using the probability characteristics of log-normal 

link flow, the mean and variance of the link travel time 
based on the BPR function can be derived as follows: 
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where, ta, εa
t
 are the mean and variance of link travel 

time Ta, respectively. 

To facilitate the presentation of the essential ideas, 

this paper assumes that the link travel times are 

independent. Hence, using the route-link incidence 

relationship, the random travel time Tk
w
 on route k 

between OD pair w can be simply expressed as the 

summation of the independent link travel time variables 

along route k: 
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According to the Central Limit Theorem, in a 

network with routes consisting of many links, the route 

travel time follows a normal distribution regardless of 

the link travel time distributions. Therefore, the route 

travel time distribution, the mean route travel time tk
w
 

and the route travel time standard deviation σk,t
w
 can be 

expressed as: 
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Route choice behavior and VI formulation: In 

analytical modeling approaches, three criteria, namely 

User Equilibrium (UE), System Optimum (SO) and 

Stochastic User Equilibrium (SUE), are frequently used 

to model travelers’ route choice behaviors. In this 

paper, it is assumed that the deterministic user 

equilibrium is reachable under stochastic demands with 

a log-normal distribution. At the equilibrium point, for 

each OD pair, no travelers can improve their mean 

route travel time by unilaterally changing routes. In 

other words, all used routes between each OD pair have 

equal mean travel time and no unused route has a lower 

mean travel time. Let vector t be the mean route travel 

time (..., tk
w
,...)T

, πw
 denotes the minimal mean travel 

time between OD pair w, f denotes the route flow 

vector (..., fk
w
,...)T

. Then, the UE conditions can be 

expressed as: 
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Mathematically, the UE conditions can be 

formulated as an equivalent VI problem as follows. 

Find a mean route flow vector f*∈Ω, such that: 

 

0))((T ≥− ∗∗ ffft , Ω∈∀f               (20) 

 

where, the superscript “*” is used to designate the 

solution of the variational inequality problem; Ω 

represents the feasible set for the mean route flow 

vector defined by Eq. (5). 

 

Solution algorithm: In this section, a solution 

algorithm is developed. It should be noted that a 

number of well-known algorithms developed for 

traditional traffic assignment problems, such as Frank-

Wolfe algorithm cannot be directly applied to solve 

model 20 due to the non-additive property of route 

travel times. Under this circumstance, a route-based 

algorithm is available for solving the proposed VI 

model. It is assumed that during the process of traffic 

assignment, the assignment route set is fixed all along, 

which can assure the convergence of the algorithm. The 

step-by-step procedure of this algorithm is given below: 

 

Step 0:  Initialization: Define the stopping tolerance, 

set iteration counter n = 0, determine the 

assignment route set with column generation 

algorithm, generate an initial route flow 

pattern f
 (0)

 by free flow travel time. 

Step 1: Update: Update the mean route travel time 

vector t
 (n)

 based on the current route flow f
 (n)

. 

Step 2: Direction finding: Perform the all or nothing 

assignment in terms of the updated mean route 

travel time t
 (n)

 and get the auxiliary route flow 

g
 (n)

. 

Step 3: Move: Find a new route flow pattern based on 

the Method of Successive Averages (MSA), 

namely, f
 (n+1)

 = f
 (n)

 + (g
(n)

-f
 (n)

) / (n+1). 

Step 4: Convergence check: If a certain equilibrium 

criterion is reached, then stop and report the 

solution; otherwise, set n = n + 1 and go to 

Step 1. 

 

NUMERICAL STUDIES 

 

A simple example road network given in Fig. 1 

consists of four nodes, five links and one OD pair (from 

node 1 to node 4). For OD pair Q
14

, the  

 

 
 
Fig. 1: Example network 
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Table 1: Link free flow travel time and link capacity 

Link no. Free flow time (min) Capacity (pcu/h) 

1 5 600 

2 12 400 

3 6 400 

4 10 400 

5 8 600 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2: The convergence of the proposed solution algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3: Equilibrium travel time and flow with different COV 

three associated routes given in link sequence are as 

follows: route 1 (link 1 → 2), route 2 (link 1 → 3 → 5) 

and route 3 (link 4 → 5). 

It is assumed that the demand of OD pair Q
14

 

follows  log-normal  distribution  with mean demand 

q
14

 = 1000 (pcu/h). The link travel time function 

adopted in this study is the BPR function Eq. (12) with 

parameters α = 0.2 and β = 2. The network 

characteristics, including link free-flow travel times and 

link capacities are given in Table 1. 

Firstly, we study the convergence of the proposed 

solution algorithm. Figure 2 depicts the values of an 

equilibrium criterion against iteration number with a 

predetermined COV
14

 = 0.1. The adopted equilibrium 

criterion is defined as a gap function as follows:   
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Figure 3 displays the effects of the fluctuation of 

traffic demand on the mean route travel time and route 

flow pattern in the network. It can be found that when 

COV
14

 increases, the equilibrium mean route travel 

time significantly increases, especially for a relative 

larger COV. The result is consistent with our 

anticipation, that is, with the increase of COV, travelers 

should expend more travel time in order to confront a 

more uncertain travel environment. In addition, Fig. 3 

also shows that travelers will switch from route 1 and 

route 3 to route 2 with the increasing of COV
14

. This 

phenomenon uncertain transportation network.  
Finally, we consider the impacts of traffic demand 

levels on route travel times. First, the base demand of 
OD pair (1, 4) is set to be q

14
 = 3000/2 (pcu/h) and the 

COV
14

 equals to 0.5. To simplify the presentation, here, 
we only examine the travel time on route 1 under 

different demand  levels: q = λ·q
14

, where, λ = (1.0, 1.1,  

 

 
 
Fig. 4: Travel time probability density of route 1 
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…, 1.9, 2.0) is the demand multiplier that represents the 

demand level from 1 to 11, respectively. Figure 4 

shows the probability density functions of the travel 

time distribution on route 1 with respect to different 

demand levels. From the figure, we can conclude that a 

higher demand will lead to an increase of the mean and 

variance of the route travel time (and hence the route 

flow). Therefore, Fig. 4 indeed verifies that the route 

flow is actually random while taking the stochastic 

demand into account. 

 

CONCLUSION 

 

We have proposed a modeling approach to study 

the traffic assignment problem in a transportation 

system with uncertainties in traffic demands. Due to the 

day-to-day traffic demand fluctuations, the link and 

route travel times should be considered as random 

variables. In this study, we treat the demand of each OD 

pair as a log-normal distributed random variable, the 

mean and variance of the link travel time is derived 

based on the moments of log-normal distribution. In 

contrast to the conventional user equilibrium, we use 

the mean route time as a new route choice criterion. 

The model is formulated as a variational inequality 

problem and solved by the method of successive 

averages in conjunction with a column generation 

procedure. Some numerical analyses of applying the 

proposed modeling approach and algorithm in a small 

test network have been carried out to demonstrate its 

applicability and efficiency. Further studies on this 

problem include extending the model to account for 

travelers’ perception errors to establish a SUE model 

and applying the proposed modeling approach into real 

networks. 
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